• Banakh, V. A., , and Smalikho I. N. , 1997: Estimation of the turbulence energy dissipation rate from pulsed Doppler lidar data. Atmos. Oceanic Opt., 10 , 957965.

    • Search Google Scholar
    • Export Citation
  • Cizek, V., 1970: Discrete Hilbert transform. IEEE Trans. Audio Electroacoust., AU-18 , 340343.

  • Doviak, R. J., , and Zrnic D. S. , 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Eberhard, W. L., , Cupp R. E. , , and Healy K. R. , 1989: Doppler lidar measurements of profiles of turbulence and momentum flux. J. Atmos. Oceanic Technol., 6 , 809819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 1996: Simulation of coherent Doppler lidar performance in the weak signal regime. J. Atmos. Oceanic Technol., 13 , 646658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., . 1997: Effects of wind turbulence on coherent Doppler lidar performance. J. Atmos. Oceanic Technol., 14 , 5475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., . 2000: Simulation of coherent Doppler lidar performance for space-based platforms. J. Appl. Meteor., 39 , 245262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., . 2001a: Errors for space-based Doppler lidar wind measurements: Definition, performance, and verification. J. Atmos. Oceanic Technol., 18 , 17491772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., . 2001b: Estimation of velocity error for Doppler lidar measurements. J. Atmos. Oceanic Technol., 18 , 16281639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., , and Kavaya M. J. , 1991: Coherent laser radar performance for general atmospheric refractive turbulence. Appl. Opt., 30 , 53255352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., , and Yadlowsky M. J. , 1994: Performance of mean frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol., 11 , 12171230. Corrigendum, 12, 445–446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., , Hannon S. , , and Henderson S. , . 1994: Performance of a 2-μm coherent Doppler lidar for wind measurements. J. Atmos. Oceanic Technol., 11 , 15171528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., , Hannon S. , , and Henderson S. , . 1997: Coherent Doppler lidar measurements of winds in the weak signal regime. Appl. Opt., 36 , 34913499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., , Hannon S. , , and Henderson S. , . 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor., 86 , 233256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., , Cornman L. , , and Sharman R. , . 2001: Simulation of three dimensional turbulent velocity fields. J. Appl. Meteor., 40 , 246258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gold, B., , Oppenheim A. V. , , and Rader C. M. , 1970: Theory and implementation of the discrete Hilbert transformation. Proc. Symp. on Computer Processing in Communications, Vol. 19, Polytechnic Institute of Brooklyn,. 235250.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., , Hale C. P. , , Magee J. R. , , Kavaya M. J. , , and Huffaker A. V. , 1991: Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers. Opt. Lett., 16 , 773775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., , Suni P. J. M. , , Hale C. P. , , Hannon S. M. , , Magee J. R. , , Bruns D. L. , , and Yuen E. H. , . 1993: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens., 31 , 415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinze, J. O., 1959: Turbulence: An Introduction to its Mechanism and Theory. McGraw-Hill, 586 pp.

  • Huffaker, M. R., , and Hardesty R. M. , 1996: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE, 84 , 181204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavaya, M. J., , Henderson S. W. , , Magee J. R. , , Hale C. P. , , and Huffaker R. M. , 1989: Remote wind profiling with a solid-state Nd:YAG coherent lidar system. Opt. Lett., 14 , 776778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., , and Kristensen L. , 1988: Applications of dual aircraft format ion flights. J. Atmos. Oceanic Technol., 5 , 715726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., , Wulfmeyer V. , , and Senff C. , . 2000: Measuring second through fourth-order moments in noisy data. J. Atmos. Oceanic Technol., 17 , 13301347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayor, S. D., , Lenschow D. H. , , Schwiesow R. L. , , Mann J. , , Frush C. L. , , and Simon M. K. , 1997: Validation of NCAR 10.6-μm CO2 Doppler lidar radial velocity measurements and comparison with a 915-MHz profiler. J. Atmos. Oceanic Technol., 14 , 11101126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzies, R. T., , and Hardesty R. M. , 1989: Coherent Doppler lidar for measurements of wind fields. Proc. IEEE, 77 , 449462.

  • Monin, A. S., , and Yaglom A. M. , 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2. MIT Press, 874 pp.

  • Rye, B. J., 1990: Spectral correlation of atmospheric lidar returns with range-dependent backscatter. J. Opt. Soc. Amer., A7 , 21992207.

    • Search Google Scholar
    • Export Citation
  • Rye, B. J., , and Hardesty R. M. , 1993a: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao lower bound. IEEE Trans. Geosci. Remote Sens., 31 , 1627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., , and Hardesty R. M. , . 1993b: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation. IEEE Trans. Geosci. Remote Sens., 31 , 2835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamitou, P., , Dabas A. , , and Flamant P. H. , 1995: Simulation in the time domain for heterodyne coherent laser radar. Appl. Opt., 34 , 499506.

  • Van Trees, H. L., 1992: Detection, Estimation, and Modulation Theory. Radar-Sonar Signal Processing and Gaussian Signals in Noise. John Wiley and Sons, 626 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 182 182 13
PDF Downloads 140 140 10

Estimating Spatial Velocity Statistics with Coherent Doppler Lidar

View More View Less
  • 1 Research Application Program, National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The spatial statistics of a simulated turbulent velocity field are estimated using radial velocity estimates from simulated coherent Doppler lidar data. The structure functions from the radial velocity estimates are processed to estimate the energy dissipation rate ε and the integral length scale Li, assuming a theoretical model for isotropic wind fields. The performance of the estimates are described by their bias, standard deviation, and percentiles. The estimates of ε2/3 are generally unbiased and robust. The distribution of the estimates of Li are highly skewed; however, the median of the distribution is generally unbiased. The effects of the spatial averaging by the atmospheric movement transverse to the lidar beam during the dwell time of each radial velocity estimate are determined, as well as the error scaling as a function of the dimensions of the total measurement region. Accurate estimates of Li require very large measurement domains in order to observe a large number of independent samples of the spatial scales that define Li.

Corresponding author address: Dr. Rod Frehlich, CIRES, University of Colorado, Campus Box 216, Boulder, CO 80309. Email: rgf@cires.colorado.edu

Abstract

The spatial statistics of a simulated turbulent velocity field are estimated using radial velocity estimates from simulated coherent Doppler lidar data. The structure functions from the radial velocity estimates are processed to estimate the energy dissipation rate ε and the integral length scale Li, assuming a theoretical model for isotropic wind fields. The performance of the estimates are described by their bias, standard deviation, and percentiles. The estimates of ε2/3 are generally unbiased and robust. The distribution of the estimates of Li are highly skewed; however, the median of the distribution is generally unbiased. The effects of the spatial averaging by the atmospheric movement transverse to the lidar beam during the dwell time of each radial velocity estimate are determined, as well as the error scaling as a function of the dimensions of the total measurement region. Accurate estimates of Li require very large measurement domains in order to observe a large number of independent samples of the spatial scales that define Li.

Corresponding author address: Dr. Rod Frehlich, CIRES, University of Colorado, Campus Box 216, Boulder, CO 80309. Email: rgf@cires.colorado.edu

Save