• Bleck, R., and Smith L. T. , 1990: A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean. 1. Model development and supporting experiments. J. Geophys. Res., 95 , 32733285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., Hanson H. P. , Hu D. , and Kraus E. B. , 1989: Mixed layer–thermocline interaction in a three-dimensional isopycnic coordinate model. J. Phys. Oceanogr., 19 , 14171439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., Olson D. B. , and Boudra D. B. , 1990: Motion and evolution of oceanic rings in a numerical model and in observations. J. Geophys. Res., 95 , 2212122140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors. 2000: DAMÉE-NAB: The base experiments. Dyn. Atmos. Oceans, 32 , 155183.

  • Chin, T. M., Mariano A. J. , and Chassignet E. P. , 1999: Spatial regression and multi-scale approximations for sequential data assimilation in ocean models. J. Geophys. Res., 104 ((C4),) 79918014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., and Parrish D. F. , 1991: The behavior of forecast error covariances for a Kalman filter in two dimensions. Mon. Wea. Rev., 119 , 17571785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, M., and Haines K. , 1996: Altimetric assimilation with water property conservation. J. Geophys. Res., 101 , 10591077.

  • DeMey, P., and Robinson A. R. , 1987: Assimilation of altimeter eddy fields in a limited-area quasi-geostrophic model. J. Phys. Oceanogr., 17 , 22802293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drakopoulos, P. G., Haines K. , and Wu P. , 1997: Altimetric assimilation in a Mediterranean general circulation model. J. Geophys. Res., 102 , 1050910523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , 1014310162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gavart, M., and DeMey P. , 1997: Isopycnal EOFs in the Azore Current region: A statistical tool for dynamical analysis and data assimilation. J. Phys. Oceanogr., 27 , 21462157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haines, K., Malanotte-Rizzoli P. , Young R. E. , and Holland W. R. , 1993: A comparison of two methods for the assimilation of altimeter data into a shallow water model. Dyn. Atmos. Oceans, 17 , 89133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higdon, R. L., and Bennett A. F. , 1996: Stability analysis of operator splitting for large-scale ocean modeling. J. Comput. Phys., 123 , 311329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., 1986: Dynamic transfer of simulated altimeter data into subsurface information by a numerical model. J. Geophys. Res., 91 , 23722400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., Fox D. N. , and Metzger E. J. , 1990: Statistical inference of weakly correlated subthermocline fields from satellite altimeter data. J. Geophys. Res., 95 , 1137511409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, S., and Ghil M. , 1997: Tracking nonlinear solutions with simulated altimetric data in a shallow-water model. J. Phys. Oceanogr., 27 , 7295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. K., and Challenor P. G. , 1999: Estimation of mean dynamic height from altimeter profiles and hydrography. J. Atmos. Oceanic Technol., 16 , 18731879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., and Robinson A. R. , 1999: Data assimilation via error subspace statistical estimation. Part I: Theory and schemes. Mon. Wea. Rev., 127 , 13851407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, F. L., 1986: Optimal Estimation. John Wiley and Sons, 376 pp.

  • Mellor, G. L., and Ezer T. , 1991: A Gulf Stream model and an altimetry scheme. J. Geophys. Res., 96 , 87798795.

  • Miller, R. N., and Cane M. A. , 1989: A Kalman filter analysis of sea level height in the tropical Pacific. J. Phys. Oceanogr., 19 , 773790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinardi, N., Rosati A. , and Pacanowski R. C. , 1995: The sea surface pressure formulation of rigid lid models. Implications for altimetric data assimilation studies. J. Mar. Syst., 6 , 109119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedstad, O. M., and Fox D. N. , 1994: Assimilation of altimeter data in a two-layer primitive equation model of Gulf Stream. J. Phys. Oceanogr., 24 , 305325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., Bleck R. , and Chassignet E. P. , 1993: Layer outcropping in numerical models of stratified flows. J. Phys. Oceanogr., 23 , 18771884.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 27 7
PDF Downloads 95 73 0

A Reduced-Order Information Filter for Multilayer Shallow-Water Models: Profiling and Assimilation of Sea Surface Height

T. M. ChinRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by T. M. Chin in
Current site
Google Scholar
PubMed
Close
,
A. C. HazaRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by A. C. Haza in
Current site
Google Scholar
PubMed
Close
, and
A. J. MarianoRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by A. J. Mariano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A reduced-order information filter (ROIF) for the Miami Isopycnal Coordinate Ocean Model (MICOM) is implemented for assimilation of the TOPEX/Poseidon sea surface height (SSH) data. ROIF is an approximate Kalman filter that compactly parameterizes the covariance matrix using a Gaussian–Markov random field. Performance of the assimilation system is investigated through observation system simulation experiments in an identical twin scenario. An adiabatic and eddy-resolving (20-km horizontal resolution) configuration for double-gyre simulation, as well as a more realistic North Atlantic model with thermodynamics, are considered. In each case, a 180-day assimilation window is found sufficient to reconstruct the surface layer topography by assimilating the SSH data sampled under the satellite tracks. The reconstructed geometric features, such as jet meanders, are found to be qualitatively accurate. A subsequent forecast run (without data assimilation) has also remained stable and accurate. An important profiling parameter in SSH assimilation is a strong positive correlation between SSH and the surface pressure (layer thickness).

Corresponding author address: Dr. T. M. Chin, RSMAS/MPO, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: tchin@rsmas.miami.edu

Abstract

A reduced-order information filter (ROIF) for the Miami Isopycnal Coordinate Ocean Model (MICOM) is implemented for assimilation of the TOPEX/Poseidon sea surface height (SSH) data. ROIF is an approximate Kalman filter that compactly parameterizes the covariance matrix using a Gaussian–Markov random field. Performance of the assimilation system is investigated through observation system simulation experiments in an identical twin scenario. An adiabatic and eddy-resolving (20-km horizontal resolution) configuration for double-gyre simulation, as well as a more realistic North Atlantic model with thermodynamics, are considered. In each case, a 180-day assimilation window is found sufficient to reconstruct the surface layer topography by assimilating the SSH data sampled under the satellite tracks. The reconstructed geometric features, such as jet meanders, are found to be qualitatively accurate. A subsequent forecast run (without data assimilation) has also remained stable and accurate. An important profiling parameter in SSH assimilation is a strong positive correlation between SSH and the surface pressure (layer thickness).

Corresponding author address: Dr. T. M. Chin, RSMAS/MPO, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: tchin@rsmas.miami.edu

Save