Comparison of Radar Reflectivity and Vertical Velocity Observed with a Scannable C-Band Radar and Two UHF Profilers in the Lower Troposphere

M. Lothon LA/OMP/CNRS, Université Paul Sabatier, Lannemezan, France

Search for other papers by M. Lothon in
Current site
Google Scholar
PubMed
Close
,
B. Campistron LA/OMP/CNRS, Université Paul Sabatier, Lannemezan, France

Search for other papers by B. Campistron in
Current site
Google Scholar
PubMed
Close
,
S. Jacoby-Koaly LA/OMP/CNRS, Université Paul Sabatier, Lannemezan, France

Search for other papers by S. Jacoby-Koaly in
Current site
Google Scholar
PubMed
Close
,
B. Bénech LA/OMP/CNRS, Université Paul Sabatier, Lannemezan, France

Search for other papers by B. Bénech in
Current site
Google Scholar
PubMed
Close
,
F. Lohou LA/OMP/CNRS, Université Paul Sabatier, Lannemezan, France

Search for other papers by F. Lohou in
Current site
Google Scholar
PubMed
Close
, and
F. Girard-Ardhuin LA/OMP/CNRS, Université Paul Sabatier, Lannemezan, France

Search for other papers by F. Girard-Ardhuin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A C-band meteorological Doppler radar has been used to investigate the dynamic processes and the coherent organizations within a clear air atmospheric boundary layer (ABL). Depending on the atmospheric conditions, this moderate sensitive radar was able to provide a coherent and continuous velocity field from 0.1 km up to 3 km above ground, and over a horizontal range reaching at least 30 km. Here the focus is on the profiling capability of this Doppler radar in a clear air boundary layer. The velocity volume processing method was used to deduce vertical profiles of the wind field from the panoramic conical scannings. A comparison between the observations of this C-band radar and two UHF wind profilers is presented. Good agreement was obtained in the measurements of the wind velocity and of the vertical and temporal evolution of the reflectivity. In particular, as for UHF wind profilers, the ABL top was found coincident for the C-band radar with a bright band of reflectivity maximum, and both types of radar detected the same thin layered echoes above the ABL. The advantage of the C-band radar over the UHF wind profiler is its steering capability, which was used in particular to obtain the two-dimensional topographical map of the ABL top. A discussion on the echo sources and vertical velocity measurement is also presented.

Corresponding author address: Marie Lothon, Centre de Recherches Atmosphériques, Observatoire Midi-Pyrénées, 65300 Lannemezan, France. Email: lotm@aero.obs-mip.fr

Abstract

A C-band meteorological Doppler radar has been used to investigate the dynamic processes and the coherent organizations within a clear air atmospheric boundary layer (ABL). Depending on the atmospheric conditions, this moderate sensitive radar was able to provide a coherent and continuous velocity field from 0.1 km up to 3 km above ground, and over a horizontal range reaching at least 30 km. Here the focus is on the profiling capability of this Doppler radar in a clear air boundary layer. The velocity volume processing method was used to deduce vertical profiles of the wind field from the panoramic conical scannings. A comparison between the observations of this C-band radar and two UHF wind profilers is presented. Good agreement was obtained in the measurements of the wind velocity and of the vertical and temporal evolution of the reflectivity. In particular, as for UHF wind profilers, the ABL top was found coincident for the C-band radar with a bright band of reflectivity maximum, and both types of radar detected the same thin layered echoes above the ABL. The advantage of the C-band radar over the UHF wind profiler is its steering capability, which was used in particular to obtain the two-dimensional topographical map of the ABL top. A discussion on the echo sources and vertical velocity measurement is also presented.

Corresponding author address: Marie Lothon, Centre de Recherches Atmosphériques, Observatoire Midi-Pyrénées, 65300 Lannemezan, France. Email: lotm@aero.obs-mip.fr

Save
  • Angevine, W. M., 1997: Errors in mean vertical velocities measured by boundary layer wind profilers. J. Atmos. Oceanic Technol., 14 , 565569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., White A. B. , and Avery S. K. , 1994: Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Bound.-Layer Meteor., 68 , 375385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., Bakwin P. S. , and Davis K. J. , 1998: Wind profiler and RASS measurements compared with measurements from a 450-m-tall tower. J. Atmos. Oceanic Technol., 15 , 818825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Browning, K. A., 1972: Atmospheric research using the Defford radar facility. Weather, 27 , 16.

  • Browning, K. A., and Wexler R. , 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7 , 105113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campistron, B., Bénech B. , Dessens J. , Jacoby-Koaly S. , Dupont E. , and Carissimo B. , 1997: Performance evaluation of a UHF boundary layer radar in raining conditions based on disdrometer measurements. Eighth Int. Workshop on Technical and Scientific Aspects of MST Radar, Bangalore, India, Solar–Terrestrial Energy Program, 334–337.

    • Search Google Scholar
    • Export Citation
  • Campistron, B., and Coauthors. 1999: The Turbulence Radar Aircraft Cells, TRAC-98 experiment. Preprints, 13th Symp. on Boundary Layers and Turbulence, Dallas, TX, Amer. Meteor. Soc., 620–623.

    • Search Google Scholar
    • Export Citation
  • Carter, D. A., Gage K. S. , Ecklund W. L. , Angevine W. M. , Johnston P. E. , Riddle A. C. , Wilson J. , and Williams C. R. , 1995: Developments in UHF lower tropospheric wind profiling at NOAA's Aeronomy Laboratory. Radio Sci., 30 , 9771001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., Mayor S. D. , Grund C. J. , Weckwerth T. M. , and Senff C. , 1998: The Lidars in Flat Terrain (LIFT) experiment. Bull. Amer. Meteor. Soc., 79 , 13291343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ecklund, W. L., Carter D. A. , and Basley B. B. , 1988: A UHF wind profiler for the boundary layer: Brief description and initial results. J. Atmos. Oceanic Technol., 5 , 432441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eymard, L., and Weill A. , 1982: Investigation of clear air convective structures in the PBL using a dual Doppler radar and a Doppler sodar. J. Appl. Meteor., 21 , 18911906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gage, K. S., Williams C. R. , Ecklung W. L. , and Johnston P. E. , 1999: Use of two profilers during MCTEX for unambiguous identification of Bragg scattering and Rayleigh scattering. J. Atmos. Sci., 56 , 36793691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Gossard, E. E., and Strauch R. G. , 1983: Radar Observation of Clear Air and Clouds. Elsevier, 280 pp.

  • Gossard, E. E., Gaynor J. E. , Zamora R. J. , and Neff W. D. , 1985: Finestructure of elevated stable layers observed by sounder and in situ tower sensors. J. Atmos. Sci., 42 , 21562169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., and Angevine W. M. , 1998: Convective boundary layer height measurement with wind profilers and comparison to cloud base. J. Atmos. Oceanic Technol., 15 , 13311338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., Banta R. M. , George J. L. , Howell J. N. , Post M. J. , Richter R. A. , and Weickmann A. M. , 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18 , 376393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashiguchi, H., Fukao S. , Tsuda T. , Yamanaka M. D. , Tobing D. L. , Sribimawati T. , Harijono S. W. B. , and Wiryosumarto H. , 1995: Observations of the planetary boundary layer over equatorial Indonesia with an L band clear-air Doppler radar: Initial results. Radio Sci., 30 , 10431054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacoby-Koaly, S., Campistron B. , Bernard S. , Bénech B. , Girard F. , Dessens J. , Dupont E. , and Carissimo B. , 2001: Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurement. Bound.-Layer Meteor., in press.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., Eloranta E. W. , and Weinman J. A. , 1980: Remote determination of winds, turbulence spectra and energy dissipation rates in the boundary layer from lidar measurements. J. Atmos. Sci., 37 , 978985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., 1986: Probing the Atmospheric Boundary Layer. Amer. Meteor. Soc., 269 pp.

  • Little, C. G., 1969: Acoustic methods for remote probing of the lower atmosphere. Proc. IEEE, 57 , 571578.

  • Lohou, F., Druilhet A. , Foster P. , Campistron B. , Gervaise C. , Loubet A. , and Delahaye J. Y. , 1995: Measurement of C2 n in the lower atmosphere with an airborne refractometer. Comparison with simultaneous Doppler radar observations. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 290–292.

    • Search Google Scholar
    • Export Citation
  • Lohou, F., Campistron B. , Druilhet A. , Foster P. , and Pagès J. P. , 1998a: Turbulence and coherent organizations in the atmospheric boundary layer: A radar-aircraft experimental approach. Bound.-Layer Meteor., 86 , 147179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohou, F., Druilhet A. , and Campistron B. , 1998b: Spatial and temporal characteristics of horizontal rolls and cells in the atmospheric boundary layer based on radar and in situ observations. Bound.-Layer Meteor., 89 , 407444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., and Wilczak J. M. , 1993: Diurnal and seasonal variations of boundary layer structure observed with a radar wind profiler and RASS. Mon. Wea. Rev., 121 , 673682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., and Strauch R. G. , 1998: Reducing the effect of ground clutter on wind profiler velocity measurements. J. Atmos. Oceanic Technol., 15 , 579586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAllister, L. G., 1968: Acoustic sounding of the lower troposphere. J. Atmos. Terr. Phys., 30 , 14391440.

  • Mead, J. B., Hopcraft G. , Frasier S. J. , Pollard B. D. , Cherry C. D. , Schaubert D. H. , and McIntosh R. E. , 1998: A volume-imaging radar wind profiler for atmospheric boundary layer turbulence studies. J. Atmos. Oceanic Technol., 15 , 849859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschinski, A., 1998: The first moments of the variance and cross-spectra of standard and interferometric clear-air Doppler radar signals. NCAR Tech. Note 441, 102 pp.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., and Wode C. , 1998: First in situ evidence for coexisting submeter temperature and humidity sheets in the lower free troposphere. J. Atmos. Sci., 55 , 28932906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschinski, A., and Lenschow D. H. , 2001: Future directions for research on meter- and submeter-scale, atmospheric turbulence. Bull. Amer. Meteor. Soc., 82 , 28312843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and VanZandt T. E. , 1996: Biases due to gravity waves in wind profiler measurements of winds. J. Appl. Meteor., 35 , 243257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petitdidier, M., Sy A. , Garrouste A. , and Delcourt J. , 1997: Statistical characteristics of the noise power spectral density in UHF and VHF wind profilers. Radio Sci., 32 , 12291247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., 1969: High-resolution tropospheric radar sounding. Radio Sci., 4 , 12611268.

  • Rogers, R. R., Knight C. A. , Tuttle J. D. , Ecklund W. L. , Carter D. A. , and Ethier S. A. , 1992: Radar reflectivity of the clear air at wavelengths of 5.5 and 33 cm. Radio Sci., 27 , 645659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schols, J. L., and Eloranta E. W. , 1992: Calculation of area-averaged vertical profiles of the horizontal wind velocity from volume-imaging lidar data. J. Geophys. Res., 97 , 1839518407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Lenschow D. H. , 2001: Observations, experiments, and large-eddy simulation. Bull. Amer. Meteor. Soc., 82 , 283294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Tatarskii, V. I., and Muschinski A. , 2001: The difference between Doppler velocity and real wind velocity in single scattering from refractive-index fluctuations. Radio Sci., 36 , 14051423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldteufel, P., and Corbin H. , 1979: On the analysis of single-Doppler radar data. J. Appl. Meteor., 18 , 532542.

  • Wilson, J. W., Weckwerth T. M. , Vivekanandan J. , Wakimoto R. M. , and Russell R. W. , 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol., 11 , 11841206.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 645 226 67
PDF Downloads 216 25 1