An Improved High-Resolution Processing Method for a Frequency Domain Interferometric Imaging (FII) Technique

Lydi Sma Laboratoire de Sondages Electromagnétiques de l'Environnement Terrestre, CNRS, Université de Toulon et du Var, La Garde, France

Search for other papers by Lydi Sma in
Current site
Google Scholar
PubMed
Close
,
Hubert Luce Laboratoire de Sondages Electromagnétiques de l'Environnement Terrestre, CNRS, Université de Toulon et du Var, La Garde, France, and Radio Science Center for Space and Atmosphere, Kyoto University, Uji, Japan

Search for other papers by Hubert Luce in
Current site
Google Scholar
PubMed
Close
,
Michel Crochet Laboratoire de Sondages Electromagnétiques de l'Environnement Terrestre, CNRS, Université de Toulon et du Var, La Garde, France

Search for other papers by Michel Crochet in
Current site
Google Scholar
PubMed
Close
, and
Shoichiro Fukao Radio Science Center for Space and Atmosphere, Kyoto University, Uji, Japan

Search for other papers by Shoichiro Fukao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Frequency hopping [also recently called range imaging (RIM) or frequency domain interferometric imaging (FII)] is a pulse compression technique used to improve the range resolution Δr of Doppler radars limited by their minimum transmitted pulse length. This technique can be seen as an extension of the dual-frequency domain interferometry (FDI) technique, since it consists of transmitting more than two adjacent frequencies. Similarly to antenna array processing used for angular scanning, RIM/FII enables range scanning along the vertical line of sight to obtain a range profile (classically called “brightness” in the literature of the field of antenna array processing). The performances of RIM/FII can be improved by using high-resolution methods such as the maximum likelihood method (or the Capon method), the singular value decomposition method with the multiple signal classification (MUSIC) algorithm, and the newly introduced improved maximum likelihood method (the Lagunas–Gasull method). The applications of such methods would permit us to investigate in detail the small-scale dynamics within the stratified atmosphere where very thin structures, such as temperature sheets, coexist with thin turbulent layers. First, simulations are presented in order to compare the performances of the Lagunas–Gasull method with respect to the other methods already discussed by Palmer et al. and Luce et al. The second part of this paper is devoted to presenting some preliminary results with a 45-MHz miniradar profiler located at Toulon, France (43.7°N, 5.58°E), and to show other applications of the Lagunas–Gasull method on data collected with the VHF middle- and upper-atmosphere (MU) radar located at Shigaraki, Japan (34.85°N, 136.10°E). These results demonstrate the applicability of the Lagunas–Gasull method on two different VHF Doppler radars.

Corresponding author address: Dr. H. Luce, Radio Science Center for Space and Atmosphere, Kyoto University, Gokanosho, Uji 611-001, Japan. Email: luce@kurasc.kyoto-u.ac.jp

Abstract

Frequency hopping [also recently called range imaging (RIM) or frequency domain interferometric imaging (FII)] is a pulse compression technique used to improve the range resolution Δr of Doppler radars limited by their minimum transmitted pulse length. This technique can be seen as an extension of the dual-frequency domain interferometry (FDI) technique, since it consists of transmitting more than two adjacent frequencies. Similarly to antenna array processing used for angular scanning, RIM/FII enables range scanning along the vertical line of sight to obtain a range profile (classically called “brightness” in the literature of the field of antenna array processing). The performances of RIM/FII can be improved by using high-resolution methods such as the maximum likelihood method (or the Capon method), the singular value decomposition method with the multiple signal classification (MUSIC) algorithm, and the newly introduced improved maximum likelihood method (the Lagunas–Gasull method). The applications of such methods would permit us to investigate in detail the small-scale dynamics within the stratified atmosphere where very thin structures, such as temperature sheets, coexist with thin turbulent layers. First, simulations are presented in order to compare the performances of the Lagunas–Gasull method with respect to the other methods already discussed by Palmer et al. and Luce et al. The second part of this paper is devoted to presenting some preliminary results with a 45-MHz miniradar profiler located at Toulon, France (43.7°N, 5.58°E), and to show other applications of the Lagunas–Gasull method on data collected with the VHF middle- and upper-atmosphere (MU) radar located at Shigaraki, Japan (34.85°N, 136.10°E). These results demonstrate the applicability of the Lagunas–Gasull method on two different VHF Doppler radars.

Corresponding author address: Dr. H. Luce, Radio Science Center for Space and Atmosphere, Kyoto University, Gokanosho, Uji 611-001, Japan. Email: luce@kurasc.kyoto-u.ac.jp

Save
  • Bienvenu, G., and Kopp L. , 1983: Optimality of high resolution array processing using the eigensystem approch. IEEE Trans. Acoust. Speech Signal Process., 31 , 12351247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candusso, J. P., and Crochet M. , 2001: Effect of beam broadening on the VHF Doppler mini-radar simple method for correcting wind velocity errors. J. Atmos. Terr. Phys., 63 , 275284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candusso, J. P., and Spano E. , 1998: Comparison of horizontal velocity measurements between the ST-VHF Provence radar and VHF small profiler using two different antenna configurations. Meteor. Z., 7 , 213219.

    • Search Google Scholar
    • Export Citation
  • Capon, J., 1969: High-resolution frequency–wavenumber spectrum analysis. Proc. IEEE, 57 , 14081419.

  • Chen, T. Y., and Chu Y. H. , 2001: Examination of the layer model of the frequency-domain inteferometry theory applied in mesosphere–stratosphere–troposphere radars. J. Atmos. Terr. Phys., 63 , 235251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chilson, P. B., Muschinski A. , and Schmidt G. , 1997: First observations of Kelvin–Helmoltz billows in an upper level jet stream using VHF frequency domain interferometry. Radio Sci., 32 , 11491160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, Y. H., and Franke S. J. , 1991: A study of the frequency coherence of stratospheric and tropospheric radar echoes made with Chung-Li radar. Geophys. Res. Lett., 18 , 18491852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, Y. H., and Chen T. Y. , 1995: Theoretical study of two-frequency coherence of MST radar returns. Radio Sci., 30 , 18031815.

  • Dalaudier, F., Sidi C. , Crochet M. , and Vernin J. , 1994: Direct evidence of “sheets” in the atmospheric temperature field. J. Atmos. Sci., 51 , 237248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnic D. S. , 1984: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Eaton, F. D., McLaughlin S. A. , and Hines J. R. , 1995: A new frequency-modulated continuous wave radar for studying planetary boundary layer morphology. Radio Sci., 30 , 7588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farley, D. T., Ierkic H. M. , and Fejer B. G. , 1981: Radar interferometry: A new technique for studying plasma turbulence in the ionosphere. J. Geophys. Res., 86 , 14671472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franke, S. J., 1990: Pulse compression and frequency domain interferometry with a frequency-hopped MST radar. Radio Sci., 25 , 565574.

  • Fukao, S., Sato T. , Tsuda T. , Kato S. , Wakasugi K. , and Makihira T. , 1985: The MU radar with an active phased array system, 1, Antenna and power amplifiers. Radio Sci., 20 , 11551168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagfors, T., 1961: Some properties of radio waves reflected from the moon and their relation to the lunar surface. J. Geophys. Res., 66 , 777785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagfors, T., . 1963: The description of a random propagation circuit by the coherence between adjacent frequencies. Symposium on Electromagnetic Theory and Antennas, Pergamon, 745–747.

    • Search Google Scholar
    • Export Citation
  • Kudeki, E., and Stitt G. R. , 1987: Frequency domain interferometry: A high resolution radar technique for studies of atmospheric turbulence. Geophys. Res. Lett., 14 , 198201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagunas-Hernandez, M. A., and Gasull-Llampallas A. , 1984: An improved maximum likelihood method for power spectral density estimation. IEEE Trans. Acoust. Speech Signal Process., 32 , 170173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C. H., and Pan C. J. , 1993: New observational techniques for studying the dynamics of the middle atmosphere using the Chung-Li VHF radar. J. Atmos. Terr. Phys., 55 , 10551066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, H., Crochet M. , Dalaudier F. , and Sidi C. , 1995: Interpretation of VHF ST radar vertical echoes from in-situ temperature sheet observations. Radio Sci., 30 , 10021025.

    • Search Google Scholar
    • Export Citation
  • Luce, H., Yamamoto M. , Fukao S. , Hélal D. , and Crochet M. , 2001a: A frequency radar interferometric imaging (FII) applied with high resolution methods. J. Atmos. Terr. Phys., 63 , 221234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, H., and Crochet M. , 2001b: Extended radar observations with the frequency radar domain interferometric (FII) technique. J. Atmos. Terr. Phys., 63 , 10331041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschinski, A., and Wode C. , 1998: First in situ evidence for coexisting submeter temperature and humidity sheets in the lower free atmosphere. J. Atmos. Sci., 55 , 28932906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschinski, A., Chilson P. B. , Kern S. , Nielinger J. , Schmidt G. , and Prenosil T. , 1999: First frequency-domain interferometry observations of large-scale vertical motion in the atmosphere. J. Atmos. Sci., 56 , 12481258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nathanson, F. E., 1969: Radar Design Principles: Signal Processing and the Environment. McGraw-Hill, 626 pp.

  • Palmer, R. D., Woodman R. F. , Fukao S. , Larsen M. F. , Yamamoto M. , Tsuda T. , and Kato S. , 1990: Frequency domain interferometry observations of tropo/stratospheric scattering layers using the MU radar: Description and first results. Geophys. Res. Lett., 17 , 21892192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., Larsen M. F. , Heinselman C. J. , and Mikkelsen I. S. , 1993: Frequency domain interferometry using the 1290 MHz Sondre Stromfjord radar: First results. J. Atmos. Oceanic Technol., 10 , 618623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., Gopalam S. , Yu T. , and Fukao S. , 1998: Coherent radar imaging using Capon's method. Radio Sci., 33 , 15851598.

  • Palmer, R. D., Yu T. , and Chilson P. B. , 1999: Range imaging using frequency diversity. Radio Sci., 34 , 14851496.

  • Richter, J. H., 1969: High resolution tropospheric radar sounding. Radio Sci., 4 , 12611268.

  • Röttger, J., and Schmidt G. , 1979: High-resolution VHF radar sounding of the troposphere and stratosphere. IEEE Trans. Geosci. Electron., 17 , 182189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R. O., 1986: Multiple emitter location and signal parameter estimation. IEEE Trans. Acoust. Speech Signal Process., 34 , 276280.

    • Search Google Scholar
    • Export Citation
  • Stitt, G. R., and Bowhill S. A. , 1986: Improving range resolution with a frequency hopping technique. Handbook for MAP, Vol. 20, Middle Atmosphere Program, 448–457.

    • Search Google Scholar
    • Export Citation
  • Stoica, P., and Moses R. , 1997: Introduction to Spectral Analysis. Prentice Hall, 319 pp.

  • Valaee, S., Champagne B. , and Kabal P. , 1995: Parametric localization of distributed sources. IEEE Trans. Signal Process., 43 , 21442153.

  • Zyweck, A., and Bogner R. E. , 1994: High-resolution radar imagery of the Mirage III aircraft. IEEE Trans. Antennas Propag., 42 , 13561360.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 278 104 25
PDF Downloads 101 22 4