A Proposal of Pulse-Pair Doppler Operation on a Spaceborne Cloud-Profiling Radar in the W Band

Satoru Kobayashi Cloud Profiling Radar Group, Communications Research Laboratory, Koganei, Tokyo, Japan

Search for other papers by Satoru Kobayashi in
Current site
Google Scholar
PubMed
Close
,
Hiroshi Kumagai Cloud Profiling Radar Group, Communications Research Laboratory, Koganei, Tokyo, Japan

Search for other papers by Hiroshi Kumagai in
Current site
Google Scholar
PubMed
Close
, and
Hiroshi Kuroiwa Cloud Profiling Radar Group, Communications Research Laboratory, Koganei, Tokyo, Japan

Search for other papers by Hiroshi Kuroiwa in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Pulse-pair Doppler operation is considered for the spaceborne mission. In a formalism, the condition that a measured Doppler velocity on pulse-pair operation corresponds to that on the FFT operation is derived. The coherent coupling effect of the spectral broadenings between Doppler fading and vertical wind shears is shown to strongly depend on the flight direction of a platform. This coupling effect, which has been ignored for ground-based and airborne radars, is characteristic for the space mission. Two kinds of pulse-pair operations, polarization diversity method and conventional contiguous pulse-pair method, are studied to determine the accuracy of Doppler velocity as a function of cloud reflectivity and pulse-pair interval. Advantages and disadvantages of these operations, including adverse effects of beam-pointing error, ground clutters, and sidelobes, are discussed along with a variety of parameters to design the optimum operation. In the assessment of the Doppler feasibility, new features suitable to the space mission are also proposed.

Corresponding author address: Dr. Satoru Kobayashi, Cloud Profiling Radar Group, Communications Research Laboratory, 4-2-1 Nukii-kita Koganei, Tokyo, Japan. Email: satoru@crl.go.jp

Abstract

Pulse-pair Doppler operation is considered for the spaceborne mission. In a formalism, the condition that a measured Doppler velocity on pulse-pair operation corresponds to that on the FFT operation is derived. The coherent coupling effect of the spectral broadenings between Doppler fading and vertical wind shears is shown to strongly depend on the flight direction of a platform. This coupling effect, which has been ignored for ground-based and airborne radars, is characteristic for the space mission. Two kinds of pulse-pair operations, polarization diversity method and conventional contiguous pulse-pair method, are studied to determine the accuracy of Doppler velocity as a function of cloud reflectivity and pulse-pair interval. Advantages and disadvantages of these operations, including adverse effects of beam-pointing error, ground clutters, and sidelobes, are discussed along with a variety of parameters to design the optimum operation. In the assessment of the Doppler feasibility, new features suitable to the space mission are also proposed.

Corresponding author address: Dr. Satoru Kobayashi, Cloud Profiling Radar Group, Communications Research Laboratory, 4-2-1 Nukii-kita Koganei, Tokyo, Japan. Email: satoru@crl.go.jp

Save
  • Amayenc, P., Testud J. , and Marzoug M. , 1993: Proposal for a spaceborne dual-beam rain radar with Doppler capability. J. Atmos. Oceanic Technol., 10 , 262276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., Srivastava R. C. , and Sloss P. W. , 1969: Wind shear and reflectivity gradient effects on Doppler radar spectra: II. J. Appl. Meteor., 8 , 384388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., and Sekhon R. S. , 1973: Doppler radar characteristic of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11 , 135.

  • de Wolf, D. A., Russchenberg W. J. , and Ligthart L. P. , 2000: Radar reflection from clouds: Gigahertz backscatter cross sections and Doppler spectra. IEEE Trans. Antennas Propag., 48 , 254259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Sirmans D. , 1973: Doppler radar with polarization diversity. J. Atmos. Sci., 30 , 737738.

  • Doviak, R. J., and Zrnic D. S. , 1993: Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.

  • Frisch, A. S., Fairall C. W. , and Snider J. B. , 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with a Ka-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52 , 27882799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., 1979: A fresh look at the reflectivity of clouds. Radio Sci., 14 , 10891097.

  • Gossard, E. E., and Strauch R. G. , 1983: Radar Observation of Clear Air and Clouds. Elsevier Science, 280 pp.

  • Gossard, E. E., Snider J. B. , Clothiaux E. E. , Martner B. , Gibson J. S. , Kropfli R. A. , and Frisch A. S. , 1997: The potential of 8-mm radars for remotely sensing cloud drop size distributions. J. Atmos. Oceanic Technol., 14 , 7687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horie, H., Iguchi T. , Hanado H. , Kuroiwa H. , Okamoto H. , and Kumagai H. , 2000: Development of a 95 GHz Airborne Cloud Profiling Radar (SPIDER): Technical aspects. IEICE Trans. Commun., E83-B , 20102020.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., 2002: A unified formalism of incoherent, quasi-coherent and coherent correlation signals on pulse-pair Doppler operation for a cloud-profiling radar: Aiming for a space mission. J. Atmos. Oceanic Technol., 19 , 443456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F. K., Im E. , and Durden S. L. , 2000: Cloud Profiling Radar (CPR) for the CloudSat Mission. Proc. IGARSS 2000, Honolulu, HI, IEEE, 2821–2823.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and Kozu T. , 1990: Spaceborne Weather Radar. Artech House, 199 pp.

  • Reed, I. S., 1962: On a moment theorem for complex Gaussian processes. IRE Trans. Inf. Theory, 8 , 194195.

  • Sato, T., Doji H. , Iwai H. , Kimura I. , Fukao S. , Yamamoto M. , Tsuda T. , and Kato S. , 1990: Computer processing for deriving drop-size distributions and vertical air velocities from VHF Doppler radar spectra. Radio Sci., 25 , 961973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloss, P. W., and Atlas D. , 1968: Wind shear and reflectivity gradient effects on Doppler radar spectra. J. Atmos. Sci., 25 , 10801089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulaby, F. W., Moore R. K. , and Fung A. K. , 1981: Microwave Remote Sensing. Artech House, 2162 pp.

  • Wakasugi, K., Mizutani A. , Matsuo M. , Fukao S. , and Kato S. , 1987: Further discussion on deriving drop-size distribution and vertical air velocities directly from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 4 , 170179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnic, D. S., 1977: Spectral moment estimates from correlated pulse pairs. IEEE Trans. Aerosp. Electron. Syst., AES-13 , 344354.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 807 341 42
PDF Downloads 346 95 4