Internal Pressure Errors in Sigma-Coordinate Ocean Models

Jarle Berntsen Department of Mathematics, University of Bergen, Bergen, Norway

Search for other papers by Jarle Berntsen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sigma-coordinate ocean models, or models based on more generalized topography following coordinate systems, are presently widely used in oceanographic studies. The controversy over internal pressure errors in sigma-coordinate ocean models is, however, still worrisome to at least some of the users. In the present study, experiments with the seamount case using both constant and large horizontal viscosities and a Smagorinsky-type viscosity are performed. For the constant viscosity (2000 m2 s−1) case, the errors do not grow prognostically. For the more realistic case with Smagorinsky viscosity and a value of the viscosity parameter in the range usually recommended, 0.2, the errors grow very strongly prognostically. Large vertical transports associated with the eight cyclones and anticyclones around the seamount create strong and real internal pressures that add on to the initial erroneous internal pressure. The growth may be balanced by multiplying the viscosity parameter by approximately a factor of 100.

A more realistic experiment for the North Sea and the Skagerrak is also performed and model results and observations are compared. It is shown that conclusions from idealized experiments may not be valid in more realistic cases.

Internal pressure errors may be very significant in areas where there is a combination of stratification and varying topography. When applying Smagorinsky-type viscosity, these errors may grow prognostically unless much larger values of the viscosity parameter than usually recommended are applied.

Corresponding author address: Jarle Berntsen, Department of Mathematics, University of Bergen, Johannes Bruns gt. 12, N-5008 Bergen, Norway. Email: jarle.berntsen@mi.uib.no

Abstract

Sigma-coordinate ocean models, or models based on more generalized topography following coordinate systems, are presently widely used in oceanographic studies. The controversy over internal pressure errors in sigma-coordinate ocean models is, however, still worrisome to at least some of the users. In the present study, experiments with the seamount case using both constant and large horizontal viscosities and a Smagorinsky-type viscosity are performed. For the constant viscosity (2000 m2 s−1) case, the errors do not grow prognostically. For the more realistic case with Smagorinsky viscosity and a value of the viscosity parameter in the range usually recommended, 0.2, the errors grow very strongly prognostically. Large vertical transports associated with the eight cyclones and anticyclones around the seamount create strong and real internal pressures that add on to the initial erroneous internal pressure. The growth may be balanced by multiplying the viscosity parameter by approximately a factor of 100.

A more realistic experiment for the North Sea and the Skagerrak is also performed and model results and observations are compared. It is shown that conclusions from idealized experiments may not be valid in more realistic cases.

Internal pressure errors may be very significant in areas where there is a combination of stratification and varying topography. When applying Smagorinsky-type viscosity, these errors may grow prognostically unless much larger values of the viscosity parameter than usually recommended are applied.

Corresponding author address: Jarle Berntsen, Department of Mathematics, University of Bergen, Johannes Bruns gt. 12, N-5008 Bergen, Norway. Email: jarle.berntsen@mi.uib.no

Save
  • Auclair, F., Marsaleix P. , and Estournel C. , 2000: Sigma coordinate pressure gradient errors: Evaluation and reduction by an inverse method. J. Atmos. Oceanic Technol., 17 , 13481367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avlesen, H., and Berntsen J. , 2000: A 2 km resolution study of the Skagerrak circulation, with a comparison of three internal pressure schemes. Tech. Rep. 199, Department of Informatics, University of Bergen, Norway, 28 pp. [Available from Department of Informatics, University of Bergen, Thormøhlensgt. 55, N-5020 Bergen, Norway.].

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and Haidvogel D. B. , 1993: Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23 , 17361753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berntsen, H., Kowalik Z. , Sælid S. , and Sørli K. , 1981: Efficient numerical simulation of ocean hydrodynamics by a splitting procedure. Model. Identif. Control, 2 , 181199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berntsen, J., 2000: Users guide for a modesplit σ-coordinate numerical ocean model. Tech. Rep. 135, Department of Applied Mathematics, University of Bergen, Norway, 48 pp. [Available from Department of Applied Mathematics, University of Bergen, Johs. Bruns gt.12, N-5008 Bergen, Norway.].

    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and Mellor G. L. , 1987: A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models. Coastal and Estuarine Series, Vol. 4, N. Heaps, Ed., Amer. Geophys. Union, 1–16.

    • Search Google Scholar
    • Export Citation
  • Chu, P. C., and Fan C. , 1997: Sixth-order difference scheme for sigma coordinate ocean models. J. Phys. Oceanogr., 27 , 20642071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, M. D., and Bryan K. , 1984: A numerical model of the ventilated thermocline. J. Phys. Oceanogr., 14 , 674687.

  • Damm, P., Hinzpeter H. , Luthardt H. , and Terzenbach U. , 1994: Seasonal and interannual variability in the atmosphere and in the sea. Circulation and Contaminant Fluxes in the North Sea, J. Sündermann, Ed., Springer-Verlag, 11–55.

    • Search Google Scholar
    • Export Citation
  • Danielssen, D. S., Edler L. , Fonselius S. , Hernroth L. , Ostrowski M. , Svendsen E. , and Talpsepp L. , 1997: Oceanographic variability in the Skagerrak and Northern Kattegat, May–June, 1990. ICES J. Mar. Sci., 54 , 753773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deleersnijder, E., and Beckers J-M. , 1992: On the use of the σ-coordinate system in regions of large bathymetric variations. J. Mar. Syst., 3 , 381390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, I. K., and Berntsen J. , 1999: Evaluation of methods for estimating the internal pressure in sigma-coordinate ocean models using measurements from the Norwegian Trench and the Skagerrak. Ph.D. thesis, University of Bergen, 39 pp. [Available from Department of Applied Mathematics, University of Bergen, Johs. Bruns gt.12, N-5008 Bergen, Norway.].

    • Search Google Scholar
    • Export Citation
  • Engedahl, H., Ådlandsvik B. , and Martinsen E. A. , 1998: Production of monthly mean climatological archives of salinity, temperature, current and sea level for the Nordic Seas. J. Mar. Syst., 14 , 126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortunato, A. B., and Baptista A. M. , 1996: Evaluation of horizontal gradients in sigma-coordinate shallow water models. Atmos.–Ocean, 34 , 489514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furnes, G., 1980: Wind effects in the North Sea. J. Phys. Oceanogr., 10 , 978984.

  • Haidvogel, D. B., and Beckmann A. , 1999: Numerical Ocean Circulation Modeling. Series on Environmental Science and Management, Vol. 2, Imperial College Press, 328 pp.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., Wilkin J. L. , and Young R. , 1991: A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J. Comput. Phys., 94 , 151185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21 , 610619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjic, Z., 1977: Pressure gradient force and advection scheme used for forecasting with steep and small scale topography. Contrib. Atmos. Phys., 50 , 186199.

    • Search Google Scholar
    • Export Citation
  • Kliem, N., and Pietrzak J. D. , 1999: On the pressure gradient error in sigma coordinate ocean models: A comparison with a laboratory experiment. J. Geophys. Res., 104 , 2978129799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, D. R., Ip J. T. C. , Naimie C. E. , and Werner F. E. , 1995: Convergence studies of tidally-rectified circulation on Georges Bank. Quantitative Skill Assessment for Coastal Ocean Models. Coastal and Estuarine Series, Vol. 47, D. R. Lynch and A. M. Davies, Eds., Amer. Geophys. Union, 153–174.

    • Search Google Scholar
    • Export Citation
  • Martinsen, E. A., and Engedahl H. , 1987: Implementation and testing of a lateral boundary scheme as an open boundary condition in a barotropic ocean model. Coastal Eng., 11 , 603627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCalpin, J. D., 1994: A comparison of second-order and fourth-order pressure gradient algorithms in a σ-co-ordinate ocean model. Int. J. Numer. Methods Fluids, 18 , 361383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 1996: User's guide for a three-dimensional, primitive equation, numerical ocean model. Princeton University Report, Princeton University, 40 pp. [Available from Princeton University, Princeton, NJ 08540.].

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., Ezer T. , and Oey L-Y. , 1994: The pressure gradient conundrum of sigma coordinate ocean models. J. Atmos. Oceanic Technol., 11 , 11261134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., Oey L-Y. , and Ezer T. , 1998: Sigma coordinate pressure gradient errors and the seamount problem. J. Atmos. Oceanic Technol., 15 , 11221131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 1982: On the convergence and error problems of the calculation of the pressure gradient force in sigma co-ordinate models. Geophys. Astrophys. Fluid Dyn., 19 , 105117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Janjic Z. I. , 1985: Problems and numerical methods of the incorporation of mountains in atmospheric models. Lect. Appl. Math., 22 , 81120.

    • Search Google Scholar
    • Export Citation
  • Robertson, R., Padman L. , and Levine M. D. , 2001: A correction to the baroclinic pressure gradient term in the Princeton Ocean Model. J. Atmos. Oceanic Technol., 18 , 10681075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skogen, M. D., Svendsen E. , and Ostrowski M. , 1998: Quantifying volume transports with the Norwegian Ecological Model System. Cont. Shelf Res., 17 , 18171837.

    • Search Google Scholar
    • Export Citation
  • Slørdal, L. H., 1995: The pressure gradient force in sigma-coordinate ocean models. Ph.D. thesis, University of Oslo, 44 pp. [Available from Department of Geophysics, University of Oslo, P.O. Box 1022 Blindern, N-0315 Oslo, Norway.].

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Damm P. E. , Skogen M. D. , Flather R. A. , and Pätsch J. , 1996: An investigation into the variability of circulation and transport on the North-West European shelf using three hydrodynamic models. Dtsch. Hydrogr. Z., 48 , 325348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y. T., 1998: A general pressure gradient formulation for ocean models. Part I: Scheme design and diagnostic analysis. Mon. Wea. Rev., 126 , 32133230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y. T., and Haidvogel D. , 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115 , 228244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y. T., and Wright D. G. , 1998: A general pressure gradient formulation for ocean models. Part II: Energy, momentum, and bottom torque consistency. Mon. Wea. Rev., 126 , 32313247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stelling, G. S., and van Kester J. A. T. M. , 1994: On the approximation of horizontal gradients in sigma coordinates for bathymetry with steep bottom slopes. Int. J. Numer. Methods Fluids, 18 , 915935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stigebrandt, A., 1980: Barotropic and baroclinic response of a semi-enclosed basin to barotropic forcing of the sea. Proceedings of the NATO Conference on Fjord Oceanography, H. J. Freeland et al., Eds., Plenum Press, 141–164.

    • Search Google Scholar
    • Export Citation
  • Sundquist, H., 1975: On truncation errors in sigma-system models. Atmosphere, 13 , 8195.

  • Sundquist, H., . 1976: On vertical interpolation and truncation in connection with use of sigma-system models. Atmosphere, 14 , 3752.

  • Svendsen, E., Sætre R. , and Mork M. , 1991: Features of the northern North Sea circulation. Cont. Shelf Res., 11 , 493508.

  • Svendsen, E., Berntsen J. , Skogen M. , Ådlandsvik B. , and Martinsen E. , 1996: Model simulation of the Skagerrak circulation and hydrography during SKAGEX. J. Mar. Syst., 8 , 219236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H. Q., and Przekwas A. J. , 1992: A comparative study of advanced shock-capturing schemes applied to Burgers' equation. J. Comput. Phys., 102 , 139159.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 796 403 71
PDF Downloads 145 44 8