• Battan, L. J., 1973: Radar Observations of the Atmosphere. University of Chicago Press, 323 pp.

  • Doviak, R. J., , and Zrnic D. S. , 1984: Doppler Radar and Weather Observations. Academic Press, 458 pp.

  • Ecklund, W. L., , Carter D. A. , , and Balsley B. B. , 1988: A UHF profiler for the boundary layer: Brief description and initial results. J. Atmos. Oceanic Technol., 5 , 432441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , White A. B. , , Edson J. B. , , and Hare J. E. , 1997: Integrated shipboard measurements of the marine boundary layer. J. Atmos. Oceanic Technol., 14 , 338359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., 1990: Radar research on the atmospheric boundary layer. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 477–527.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., , Chadwick R. R. , , Neff W. D. , , and Moran K. P. , 1982: The use of ground based Doppler radars to measure gradients, fluxes and structure parameters in elevated layers. J. Appl. Meteor., 21 , 211226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., , Welsh D. C. , , and Strauch R. G. , 1990: Radar-measured height profiles of C2 N and turbulence dissipation rate compared with radiosonde data during October 1989 at Denver. Tech. Rep. ERL 442-WPL 63, 115 pp. [Available from NOAA/ERL/ETL, 325 Broadway, Boulder, CO 80305.].

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., , Strauch R. G. , , Stankov B. B. , , and Wolfe D. E. , 1995: Measurements of property gradients and turbulence aloft with ground-based Doppler radars. NOAA Tech. Memo. ERL 453- ETL 67, Environmental Technology Laboratory, Boulder, CO, 31 pp. [Available from the National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.].

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., , Wolfe D. E. , , Moran K. E. , , Paulus R. A. , , Anderson K. D. , , and Rogers L. T. , 1998: Measurement of clear-air gradients and turbulence properties with radar wind profilers. J. Atmos. Oceanic Technol., 15 , 321342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., , Gutman S. , , Stankov B. B. , , and Wolfe D. E. , 1999: Profiles of radiorefractive index and humidity derived from radar wind profilers and the Global Positioning System. Radio Sci., 34 , 371383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., , and Sekhon R. S. , 1974: Objective determination of the noise level in Doppler spectra. J. Appl. Meteor., 13 , 808811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ottersten, H., 1969: Mean vertical gradient of potential refractive index in turbulent mixing and radar detection of CAT. Radio Sci., 4 , 12471249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , and Ruffieux D. , 1996: Precipitation identification from radar wind-profiler spectral moment data: Vertical velocity histograms, velocity variance, and signal power-vertical velocity correlations. J. Atmos. Oceanic Technol., 13 , 545559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, J. A., , Westwater E. R. , , May P. T. , , and McMillin L. M. , 1991: Prospects for temperature sounding with satellite and ground-based RASS measurements. J. Atmos. Oceanic Technol., 8 , 506513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloss, P. W., , and Atlas D. , 1968: Wind shear and reflectivity gradient effects on Doppler radar spectra. J. Atmos. Sci., 25 , 10801089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stankov, B. B., 1996: Ground- and space-based temperature and humidity retrievals: Statistical evaluation. J. Appl. Meteor., 35 , 444463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stankov, B. B., 1998: Multisensor retrieval of atmospheric properties. Bull. Amer. Meteor. Soc., 79 , 18351854.

  • Stankov, B. B., , Westwater E. R. , , and Gossard E. E. , 1996: Use of wind profiler estimates of significant moisture gradients to improve humidity profile retrieval. J. Atmos. Oceanic Technol., 13 , 12851290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuda, T., , Miyamoto M. , , and Furumoto J. , 2001: Estimation of a humidity profile using turbulence echo characteristics. J. Atmos. Oceanic Technol., 18 , 12141222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, B. I., , and Wuertz D. B. , 1991: Quality control algorithm for profiler measurements of winds and RASS temperatures. NOAA Tech. Memo. ERL WPL-212, 32 pp.

    • Search Google Scholar
    • Export Citation
  • Weber, B. L., , Wuertz D. B. , , and McPeek R. , 1993: Quality control for profiler measurements of winds and RASS temperatures. J. Atmos. Oceanic Technol., 10 , 452464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., , Stankov B. B. , , Cimini D. , , Han Y. , , Shaw H. A. , , Lesht B. M. , , and Long C. N. , 2003: Radiosonde humidity soundings and microwave radiometers during Nauru99. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • White, A. B., 1997: Radar remote sensing of scalar and velocity microturbulence in the convective boundary layer. NOAA Tech. Memo. ERL ETL-276, Environmental Technology Laboratory, Boulder, CO, 127 pp. [Available from NOAA/ERL/ETL, 325 Broadway, Boulder, CO 80305.].

    • Search Google Scholar
    • Export Citation
  • White, A. B., , and Fairall C. W. , 1991: Radar observations of humidity variability in and above the marine atmospheric boundary layer. J. Atmos. Oceanic Technol., 8 , 639658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., , Lataitis R. J. , , and Lawrence R. S. , 1999: Space and time filtering of remotely sensed velocity turbulence. J. Atmos. Oceanic Technol., 16 , 19671971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, D. E., , Weber B. L. , , Wilfong T. L. , , Welsh D. C. , , Wuertz D. B. , , and Merritt D. A. , 2001: An advanced signal processing system for radar wind profilers. 11th Symp. on Meteorological Observations and Instrumentation, Albuquerque, NM, Amer. Meteor. Soc., 339–344.

    • Search Google Scholar
    • Export Citation
  • Woodman, R. F., 1985: Spectral moment estimation in MST radars. Radio Sci., 20 , 11851195.

  • Wuertz, D. B., , Weber B. L. , , Strauch R. G. , , Frisch A. S. , , Little C. G. , , Merritt D. A. , , Moran K. P. , , and Welsh D. C. , 1988: Effects of precipitation on UHF wind profiler measurements. J. Atmos. Oceanic Technol., 5 , 450465.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 216 10
PDF Downloads 42 42 4

Humidity Gradient Profiles from Wind Profiling Radars Using the NOAA/ETL Advanced Signal Processing System (SPS)

View More View Less
  • 1 NOAA/Environmental Technology Laboratory, Boulder, Colorado
  • | 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Environmental Technology Laboratory, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

An algorithm to compute the magnitude of humidity gradient profiles from the measurements of the zeroth, first, and second moments of wind profiling radar (WPR) Doppler spectra was developed and tested. The algorithm extends the National Oceanic and Atmospheric Administration (NOAA)/Environmental Technology Laboratory (ETL) Advanced Signal Processing System (SPS), which provides quality control of radar data in the spectral domain for wind profile retrievals, to include the retrieval of humidity gradient profiles. The algorithm uses a recently developed approximate formula for correcting Doppler spectral widths for the spatial and temporal filtering effects. Data collected by a 3-beam 915-MHz WPR onboard the NOAA research vessel Ronald H. Brown (RHB) and a 5-beam 449-MHz WPR developed at the ETL were used in this study. The two datasets cover vastly different atmospheric conditions, with the 915-MHz shipborne system probing the tropical ocean atmosphere and the 449-MHz WPR probing continental winter upslope icing storm in the Colorado Front Range. Vaisala radiosonde measurements of humidity and temperature profiles on board the RHB and the standard National Weather Service (NWS) radiosonde measurements at Stapleton, Colorado, were used for comparisons. The cases chosen represent typical atmospheric conditions and not special atmospheric situations. Results show that using SPS-obtained measurements of the zeroth, first, and second spectral moments provide radar-obtained humidity gradient profiles up to 3 km AGL.

Retired

Corresponding author address: Dr. B. Boba Stankov, NOAA/Environmental Technology Laboratory, 325 Broadway, Boulder, CO 80305-3328. Email: B.Boba.Stankov@noaa.gov

Abstract

An algorithm to compute the magnitude of humidity gradient profiles from the measurements of the zeroth, first, and second moments of wind profiling radar (WPR) Doppler spectra was developed and tested. The algorithm extends the National Oceanic and Atmospheric Administration (NOAA)/Environmental Technology Laboratory (ETL) Advanced Signal Processing System (SPS), which provides quality control of radar data in the spectral domain for wind profile retrievals, to include the retrieval of humidity gradient profiles. The algorithm uses a recently developed approximate formula for correcting Doppler spectral widths for the spatial and temporal filtering effects. Data collected by a 3-beam 915-MHz WPR onboard the NOAA research vessel Ronald H. Brown (RHB) and a 5-beam 449-MHz WPR developed at the ETL were used in this study. The two datasets cover vastly different atmospheric conditions, with the 915-MHz shipborne system probing the tropical ocean atmosphere and the 449-MHz WPR probing continental winter upslope icing storm in the Colorado Front Range. Vaisala radiosonde measurements of humidity and temperature profiles on board the RHB and the standard National Weather Service (NWS) radiosonde measurements at Stapleton, Colorado, were used for comparisons. The cases chosen represent typical atmospheric conditions and not special atmospheric situations. Results show that using SPS-obtained measurements of the zeroth, first, and second spectral moments provide radar-obtained humidity gradient profiles up to 3 km AGL.

Retired

Corresponding author address: Dr. B. Boba Stankov, NOAA/Environmental Technology Laboratory, 325 Broadway, Boulder, CO 80305-3328. Email: B.Boba.Stankov@noaa.gov

Save