• Bristor, C. L., , and Pichel W. , 1974: 3-D cloud viewing using overlapped pictures from two geostationary satellites. Bull. Amer. Meteor. Soc., 55 , 13531355.

    • Search Google Scholar
    • Export Citation
  • Bufton, J. L., 1989: Laser altimetry measurements from aircraft and spacecraft. Proc. IEEE, 77 , 463477.

  • Diner, J. D., and Coauthors. 1998: Multi-angle imaging spectroradiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens., 36 , 10721085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diner, J. D., and Coauthors. 1999: New directions in Earth observing: Scientific applications of multiangle remote sensing. Bull. Amer. Meteor. Soc., 80 , 22092228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1982: Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60 , 355368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., , and Dodge J. C. , 1983: Applications of stereoscopic height computations from dual geosynchronous satellite data/joint NASA–Japan stereo project. Adv. Space Res., 2 , 153160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvin, J., , Bufton J. , , Blair J. , , Harding D. , , Luthcke S. , , Frawley J. , , and Rowlands D. D. , 1998: Observations of the Earth's topography from the Shuttle Laser Altimeter (SLA): Laser-pulse echo-recovery measurements of terrestrial surfaces. Phys. Chem. Earth, 23 , 10531068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasler, A. F., 1981: Stereographic observations from geosynchronous satellites: An important new tool for the atmospheric sciences. Bull. Amer. Meteor. Soc., 62 , 194212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasler, A. F., , Mack R. , , and Negri A. , 1983: Stereoscopic observations from meteorological satellites. Adv. Space Res., 2 , 105113.

  • Hasler, A. F., , Strong J. , , Woodward R. H. , , and Pierce H. , 1991: Automatic analysis of stereoscopic satellite image pairs for determination of cloud-top height and structure. J. Appl. Meteor., 30 , 257281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horvath, A., , and Davies R. , 2001: Feasibility and error analysis of cloud motion wind extraction from near-simultaneous multiangle MISR measurements. J. Atmos. Oceanic Technol., 18 , 591608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and Kasai T. , 1968: Stereoscopic analysis of photographs taken by NIMBUS II APT system. J. Meteor. Soc. Japan, 46 , 6067.

  • Lorenz, D., 1985: On the feasibility of cloud stereoscopy and wind determination with the Along-Track Scanning Radiometer. Int. J. Remote Sens., 6 , 14451461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mack, R., , Hasler A. F. , , and Rodgers E. B. , 1983: Stereoscopic observations of hurricanes and tornadic thunderstorms from geosynchronous satellites. Adv. Space Res., 2 , 143151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahani, S. E., , Gao X. , , Sorooshian S. , , and Imam B. , 2000: Estimating cloud top height and spatial displacement from scan-synchronous GOES images using simplified IR-based stereoscopic analysis. J. Geophys. Res., 105 , 1559715608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minzner, R. A., , Shenk W. E. , , Teagle R. D. , , and Steranka J. , 1978: Stereographic cloud heights from imagery of SMS/GOES satellites. Geophys. Res. Lett., 5 , 2124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieman, S. J., , Schmetz J. , , and Menzel W. P. , 1993: A comparison of several techniques to assign heights to cloud tracers. J. Appl. Meteor., 32 , 15591568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ondrejka, R. J., , and Conover J. H. , 1966: Note on the stereo interpretation of Nimbus II APT photography. Mon. Wea. Rev., 94 , 611614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prata, A. J., , and Turner P. J. , 1997: Cloud-top height determination using ATSR data. Remote Sens. Environ., 59 , 113.

  • Prata, A. J., , Cechet R. P. , , Barton I. J. , , and Llewellyn-Jones D. T. , 1990: The Along-Track Scanning Radiometer for ERS-1—Scan geometry and data simulation. IEEE Trans. Geosci. Remote Sens., 28 , 313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , Mack R. , , and Hasler A. F. , 1983: A satellite stereoscopic technique to estimate tropical cyclone intensity. Mon. Wea. Rev., 111 , 15991610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shenk, W. E., , Holub R. J. , , and Neff R. A. , 1975: Stereographic cloud analysis from Apollo 6 photographs over a cold front. Bull. Amer. Meteor. Soc., 56 , 416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., , and Palm S. P. , 1996: Space based atmospheric measurements by GLAS. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Springer-Verlag, 213–217.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., , Hansen M. Z. , , and Caudill L. O. , 1982: Cloud top remote sensing by airborne LIDAR. Appl. Opt., 21 , 15641571.

  • Szejwach, G., , Sletten T. N. , , and Hasler A. F. , 1983: The use of stereoscopic satellite observation in the determination of the emissivity of cirrus. Adv. Space Res., 2 , 161164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehead, V. S., , Browne I. D. , , and Garcia J. G. , 1969: Cloud height contouring from Apollo 6 photography. Bull. Amer. Meteor. Soc., 50 , 522528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., , Santek D. , , and Starr D. O'C. , 1998: Cloud-top heights from GOES-8 and GOES-9 stereoscopic imagery. J. Appl. Meteor., 37 , 405413.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 200 200 3
PDF Downloads 25 25 1

Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

View More View Less
  • 1 Goddard Earth Science and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland
  • | 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Science Systems and Applications, Inc., Lanham, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. Further, as technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle Columbia in 1997 and was the first earth-observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of ±620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

Corresponding author address: Dr. Redgie Lancaster, NASA Goddard Space Flight Center, Code 912, Greenbelt, MD 20771. Email: lancaster@virl.gsfc.nasa.gov

Abstract

Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. Further, as technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle Columbia in 1997 and was the first earth-observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of ±620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

Corresponding author address: Dr. Redgie Lancaster, NASA Goddard Space Flight Center, Code 912, Greenbelt, MD 20771. Email: lancaster@virl.gsfc.nasa.gov

Save