• Abel, P. G., , and Gruber A. , 1979: An improved model for the calculation of longwave flux at 11 μm. NOAA Tech. Rep. NESS 106, 24 pp. [NTIS PB80-119431.].

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., , and Vulis I. L. , 1989: Intercomparison and interpretation of satellite derived directional albedos over deserts. J. Climate, 2 , 393407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., , Kneizys F. X. , , and Davies R. W. , 1989: Line shape and the water vapor continuum. Atmos. Res., 23 , 229241.

  • Ellingson, R. G., , Yanuk D. J. , , Lee H-T. , , and Gruber A. , 1989: A technique for estimating outgoing longwave radiation from HIRS radiance observations. J. Atmos. Oceanic Technol., 6 , 706711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., , Lee H-T. , , Yanuk D. , , and Gruber A. , 1994: Validation of a technique for estimating outgoing longwave radiation from HIRS radiance observations. J. Atmos. Oceanic Technol., 11 , 357365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., , Ellingson R. G. , , Ardanuy P. , , Weiss M. , , Yang S. K. , , and Oh S. , 1994: A comparison of ERBE and AVHRR longwave flux estimates. Bull. Amer. Meteor. Soc., 75 , 21152130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haurwitz, F., , and Kuhn W. R. , 1974: The distribution of tropospheric planetary radiation in the Southern Hemisphere. J. Appl. Meteor., 13 , 417429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , Priestley K. J. , , Kratz D. P. , , Geier E. B. , , Green R. N. , , Wielicki B. A. , , O'R. Hinton P. , , and Nolan S. K. , 2001: Determination of unfiltered radiances from the Clouds and the Earth's Radiant Energy System instrument. J. Appl. Meteor., 40 , 822835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X. L., , Schmit T. J. , , and Smith W. L. , 1999: A nonlinear physical retrieval algorithm—Its application to the GOES-8/9 Sounder. J. Appl. Meteor., 38 , 501513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkmus, R., 1997: Random Lorentz band model with exponential-tailed S−1 line intensity distribution function. J. Opt. Soc. Amer., 57 , 323329.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , Holt F. C. , , Schmit T. J. , , Aune R. M. , , Schreiner A. J. , , Wade G. S. , , and Gray D. G. , 1998: Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc., 79 , 20592077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morel, P., 1985: Plan for the implementation of the World Climate Research Programme. Adv. Space Res., 5 (6) 1520.

  • NAS/NRC, 1983: Toward an international geosphere–biosphere program. National Research Council Workshop Rep., National Academy Press, Washington, D.C.

    • Search Google Scholar
    • Export Citation
  • Phillips, N., , Susskind J. , , and McMillin L. , 1988: Results of a joint NOAA/NASA sounder simulation study. J. Atmos. Oceanic Technol., 5 , 4456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., , and Walshaw C. D. , 1966: The computation of infrared cooling rates in planetary atmospheres. Quart. J. Roy. Meteor. Soc., 92 , 6792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors. 1992: The HITRAN molecular database: Editions of 1991 and 1992. J. Quant. Spectrosc. Radiat. Trans., 48 , 496508.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., , Feltz W. F. , , Menzel W. P. , , Jung J. , , Noel A. P. , , Heil J. N. , , Nelson J. P. III, , and Wade G. S. , 2002: Validation and use of GOES sounder moisture information. Wea. Forecasting, 17 , 139154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, A. J., , Schmit T. J. , , and Menzel W. P. , 2001: Observations and trends of clouds based on GOES sounder data. J. Geophys. Res., 106 , 2034920363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SSEC, cited 1997: McIDAS user's guide. Space Science and Engineering Center, University of Wisconsin—Madison. [Available online at www.ssec.wisc.edu/mug.].

    • Search Google Scholar
    • Export Citation
  • Warner, J. X., , and Ellingson R. G. , 2000: A new narrowband radiation model for water vapor absorption. J. Atmos. Sci., 57 , 14811496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinreb, M. P., , Jamison M. , , Fulton N. , , Chen Y. , , Johnson J. X. , , Bremer J. , , Smith C. , , and Baucom J. , 1997: Operational calibration of Geostationary Operational Environmental Satellite-8 and -9 imagers and sounders. Appl. Opt., 36 , 68956904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , Barkstrom B. R. , , Harrison E. F. , , Lee R. B. III, , Smith G. L. , , and Cooper J. E. , 1996: Clouds and the Earth's Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77 , 853868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1988: Concept of the Global Energy and Water Cycle Experiment: Report of the JSC Study Group on GEWEX. WMO Tech. Doc. 215, WCRP-5, 70 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 234 234 28
PDF Downloads 28 28 3

Validation of a Technique for Estimating OLR with the GOES Sounder

View More View Less
  • 1 Cooperative Institute for Climate Studies, University of Maryland at College Park, College Park, Maryland
  • | 2 NOAA/NESDIS, Camp Springs, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In order to eventually use the capability of the Geostationary Operational Environmental Satellite (GOES) Sounder to capture the diurnal signal of outgoing longwave radiation (OLR), it is necessary to establish its instantaneous accuracy. Error characteristics of OLR derived from the GOES Sounder are analyzed using Clouds and Earth's Radiant Energy System (CERES) observations. The comparisons are based on over 28 000 data collected in July 1998 and April 2000 over the continental United States. The July data correspond to observations from GOES-8 and -9 and the CERES instrument on board the Tropical Rainfall Measurement Mission (TRMM) satellite. The April data correspond to GOES-8 and -10, and two CERES instruments on board the Terra satellite. The comparisons are for instantaneous, homogeneous scenes of 1° × 1° boxes. Comparisons of GOES Sounder with collocated TRMM and Terra CERES OLR show instantaneous rms agreement to within about 7 W m−2 for day and/or night homogeneous scenes. The GOES technique explained over 91% and 96% of the variance of CERES observations for both night and day, and for both land and ocean scenes for July 1998 and April 2000, respectively.

Current affiliation: Raytheon ITSS, Lanham, Maryland

+ Current affiliation: Department of Meteorology, The Florida State University, Tallahassee, Florida

Corresponding author affiliation: Dr. Robert Ellingson, Department of Meteorology, Room 404, Love Building, The Florida State University, Tallahassee, FL 32306. Email: bobe@met.fsu.edu

Abstract

In order to eventually use the capability of the Geostationary Operational Environmental Satellite (GOES) Sounder to capture the diurnal signal of outgoing longwave radiation (OLR), it is necessary to establish its instantaneous accuracy. Error characteristics of OLR derived from the GOES Sounder are analyzed using Clouds and Earth's Radiant Energy System (CERES) observations. The comparisons are based on over 28 000 data collected in July 1998 and April 2000 over the continental United States. The July data correspond to observations from GOES-8 and -9 and the CERES instrument on board the Tropical Rainfall Measurement Mission (TRMM) satellite. The April data correspond to GOES-8 and -10, and two CERES instruments on board the Terra satellite. The comparisons are for instantaneous, homogeneous scenes of 1° × 1° boxes. Comparisons of GOES Sounder with collocated TRMM and Terra CERES OLR show instantaneous rms agreement to within about 7 W m−2 for day and/or night homogeneous scenes. The GOES technique explained over 91% and 96% of the variance of CERES observations for both night and day, and for both land and ocean scenes for July 1998 and April 2000, respectively.

Current affiliation: Raytheon ITSS, Lanham, Maryland

+ Current affiliation: Department of Meteorology, The Florida State University, Tallahassee, Florida

Corresponding author affiliation: Dr. Robert Ellingson, Department of Meteorology, Room 404, Love Building, The Florida State University, Tallahassee, FL 32306. Email: bobe@met.fsu.edu

Save