• Andreas, E. L., , and Emanuel K. A. , 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58 , 37413751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., , and Ulbrich C. W. , 1977: Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteor., 16 , 13221331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., 1986: A comparison of the wave-induced momentum flux to breaking and nonbreaking waves. Wave Dynamics and Radio Probing of the Ocean Surface, O. M. Phillips and K. Hasselmann, Eds., Plenum Press, 321–333.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., , and Swift C. T. , 1980: The Seasat microwave instruments in historical perspective. IEEE J. Oceanic Eng., OE-5 , 7479.

  • Black, P. G., , and Adams W. L. , 1983: Guidance for estimating surface winds based on sea state observations from aircraft and sea state catalog. NOAA Tech. Memo. FCM-G1-1983, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., , and Swift C. T. , 1984: Airborne stepped frequency microwave radiometer measurements of rainfall rate and surface wind speed in hurricanes. Preprints, Second Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 433–438.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., , Black P. G. , , and Houston S. H. , 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128 , 15501561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, P. D., , and Banner M. L. , 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24 , 25462559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delnore, V. E., , Bahn G. S. , , Grantham W. L. , , Harrington R. F. , , and Jones W. L. , 1985: Active and passive measurements in Hurricane Allen. NASA Tech. Rep. TM-86390, 138 pp.

    • Search Google Scholar
    • Export Citation
  • Donelan, M., , Skafel M. , , Graber H. , , Liu P. , , Schwab D. , , and Venkatesh S. , 1993: On the growth of wind-generated waves. Atmos.–Ocean, 30 , 457478.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Memo. NESDIS-11, 47 pp.

  • Elachi, C., , Thompson T. W. , , and King D. , 1977: Ocean wave patterns under Hurricane Gloria: Observation with an airborne synthetic-aperture radar. Science, 198 , 609610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: Structure and energetics of the tropical cyclone. Part I: Storm structure. Mon. Wea. Rev., 105 , 11191135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodberlet, M., , and Swift C. T. , 1996: Development of a second generation stepped frequency microwave radiometer for IWRS. Tech. Rep. Prosensing, Inc. (formerly Quadrant Engineering), Amherst, MA, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Harrington, R. F., 1980: The development of a stepped frequency microwave radiometer and its application to remote sensing of the earth. NASA Tech. Rep. TM-81847, 169 pp.

    • Search Google Scholar
    • Export Citation
  • Harris, D. L., 1986: Models for the hurricane wave field. Wave Dynamics and Radio Probing of the Ocean Surface, O. M. Phillips and K. Hasselmann, Eds., Plenum Press, 677–681.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., , and Franklin J. L. , 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Holt, B., , and Gonzalez F. I. , 1986: SIR-B observations of dominant ocean waves near Hurricane Josephine. J. Geophys. Res., 91 , 85958598.

  • Jacob, S. D., , Shay L. K. , , Mariano A. J. , , and Black P. G. , 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30 , 14071429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., , Neumann C. J. , , and Davis M. A. S. , 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC-22, 21 pp.

    • Search Google Scholar
    • Export Citation
  • Jones, W. L., , Black P. G. , , Delnore V. E. , , and Swift C. T. , 1981: Airborne microwave remote-sensing measurements of Hurricane Allen. Science, 214 , 274280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1957: Mean soundings for the hurricane eye. National Hurricane Research Project Rep. 13, U. S. Weather Bureau, 10 pp.

  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15 , 9192.

  • Jorgensen, D. P., , and Willis P. L. , 1982: A ZR relationship for hurricanes. J. Appl. Meteor., 21 , 356366.

  • King, D. B., , and Shemdin O. H. , 1979: Radar observations of hurricane wave directions. Proc. 16th Int. Conf. Coastal Eng., Hamburg, Germany, ASCE, 209–226.

    • Search Google Scholar
    • Export Citation
  • Klein, L. A., , and Swift C. T. , 1977: An improved model for the dialectric constant of sea water at microwave frequencies. IEEE J. Oceanic Eng., OE-2 , 104111.

    • Search Google Scholar
    • Export Citation
  • Kraft, R. H., 1961: The hurricane's central pressure and highest wind. Mar. Wea. Log, 5 , 157.

  • Longuet-Higgins, M. S., 1986: Advances in breaking-wave dynamics. Wave Dynamics and Radio Probing of the Ocean Surface, O. M. Phillips and K. Hasselmann, Eds., Plenum Press, 209–230.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., , House R. A. Jr., , and Gamache J. F. , 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martsinkevich, L. M., , and Melent'ev V. V. , 1982: Relationship between microwave brightness temperature of a wind-driven sea and characteristics of the sea state and wave-forming factors (option-b). USSR/USA Bering Sea Experiment, K. Y. Kondrat'ev, Ed., Oxonian Press, 119–142.

    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: The three-dimensional wind structure around a tropical cyclone. National Hurricane Research Project Rep. 15, U. S. Weather Bureau, 41 pp.

    • Search Google Scholar
    • Export Citation
  • Nordberg, W., , Conaway J. , , and Thaddeus P. , 1969: Microwave observations of the sea state from aircraft. Quart. J. Roy. Meteor. Soc., 95 , 408413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsen, R. L., , Rogers D. V. , , and Hodge D. B. , 1978: The aRb relation in the calculation of rain attenuation. IEEE Trans. Antennas Propagat., AP-26 , 318329.

    • Search Google Scholar
    • Export Citation
  • Pedersen, L. T., 1990: Microwave radiometers. Microwave Remote Sensing for Oceanographic and Marine Weather-Forecast Models, R. A. Vaughn, Ed., Kluwer Academic, 177–190.

    • Search Google Scholar
    • Export Citation
  • Pore, A., 1957: Ocean surface waves produced by some recent hurricanes. Mon. Wea. Rev., 85 , 385392.

  • Powell, M. D., 1980: Evaluations of diagnostic marine boundary layer models applied to hurricanes. Mon. Wea. Rev., 108 , 757766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , Houston S. H. , , and Reinhold T. A. , 1996: Hurricane Andrew's landfall in South Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11 , 304328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., , and Staelin D. H. , 1972: Microwave emissivity of sea foam and its effect on nadir radiometric measurements. J. Geophys. Res., 77 , 65286538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, C. B., , and Cardone V. , 1974: Observations of oceanic whitecaps and their relation to remote measurements of surface wind speed. J. Geophys. Res., 79 , 444452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheets, R. C., 1969: Some mean hurricane soundings. J. Appl. Meteor., 8 , 134146.

  • St. Germain, K. M., , Swift C. T. , , and Grenfell T. C. , 1993: Determination of dielectric constant of young sea ice using microwave spectral radiometry. J. Geophys. Res., 98 , 46754679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stogryn, A., 1972: The emissivity of sea foam at microwave frequencies. J. Geophys. Res., 77 , 16581666.

  • Swift, C. T., , and Goodberlet M. A. , 1992: Passive microwave remote sensing of the ocean. Specialist Meeting on Microwave Radiometry and Remote Sensing Applications, Boulder, CO, U.S. DOC/NOAA/ERL/WPL, 87–93.

    • Search Google Scholar
    • Export Citation
  • Swift, C. T., , Dehority D. C. , , Tanner A. B. , , and McIntosh R. E. , 1986: Passive microwave spectral emission from saline ice at C-band during the growth phase. IEEE Trans. Geosci. Remote Sens., GE-24 , 840848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanner, A., , Swift C. T. , , and Black P. G. , 1987: Operational airborne remote sensing of wind speeds in hurricanes. Preprints, 17th Conf. Hurricane and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 385–387.

    • Search Google Scholar
    • Export Citation
  • Tinga, W. R., , Voss W. A. G. , , and Blossey D. F. , 1973: Generalized approach to multiphase dielectric mixture theory. J. Appl. Phys., 44 , 38973902.

  • Tran, N., , Vandemark D. , , Ruf C. S. , , and Chapron B. , 2002: The dependence of nadir ocean surface emissivity on wind vector as measured with microwave radiometer. IEEE Trans. Geosci. Remote Sens., 40 , 515523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulaby, F. W., , Moore R. K. , , and Fung A. K. , 1981: Microwave Remote Sensing. Vol. 1, Active and Passive,. Artech House, 456 pp.

  • Ulaby, F. W., , Moore R. K. , , and Fung A. K. , 1986: Microwave Remote Sensing. Vol. 3, Active and Passive,. Vol. 3. Artech House, 2162 pp.

  • U.S. Government Printing Office, 1976: U.S. Standard Atmosphere, 1976. U.S. Government Printing Office, 277 pp.

  • Webster, W. L. J., , Wilheit T. T. , , Ross D. B. , , and Gloersen P. , 1976: Spectral characteristics of the microwave emission from a wind-driven foam-covered sea. J. Geophys. Res., 81 , 30953099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. W., , Walsh E. J. , , Vandermark D. , , Krabill W. B. , , Houston S. H. , , Powell M. D. , , Black P. G. , , and Marks F. D. , 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31 , 24722488.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 312 312 22
PDF Downloads 136 136 9

Verification of Remotely Sensed Sea Surface Winds in Hurricanes

View More View Less
  • 1 University of Miami, RSMAS/CIMAS, Miami, Florida
  • | 2 NOAA/AOML/Hurricane Research Division, Miami, Florida
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Surface winds in hurricanes have been estimated remotely using the Stepped-Frequency Microwave Radiometer (SFMR) from the NOAA WP-3D aircraft for the past 15 years. Since the use of the GPS dropwindsonde system in hurricanes was first initiated in 1997, routine collocated SFMR and GPS surface wind estimates have been made. During the 1998, 1999, and 2001 hurricane seasons, a total of 249 paired samples were acquired and compared. The SFMR equivalent 1-min mean, 10-m level neutral stability winds were found to be biased high by 2.3 m s−1 relative to the 10-m GPS winds computed from an estimate of the mean boundary layer wind. Across the range of wind speeds from 10 to 60 m s−1, the rmse was 3.3 m s−1. The bias was found to be dependent on storm quadrant and independent of wind speed, a result that suggests a possible relationship between microwave brightness temperatures and surface wave properties. Tests of retrieved winds' sensitivities to sea surface temperature, salinity, atmospheric thermodynamic variability, and surface wind direction indicate wind speed errors of less than 1 m s−1 above 15 m s−1.

Corresponding author address: Eric W. Uhlhorn, University of Miami, RSMAS/CIMAS, 4301 Rickenbacker Cswy., Miami, FL 33149. Email: Eric.Uhlhorn@noaa.gov

Abstract

Surface winds in hurricanes have been estimated remotely using the Stepped-Frequency Microwave Radiometer (SFMR) from the NOAA WP-3D aircraft for the past 15 years. Since the use of the GPS dropwindsonde system in hurricanes was first initiated in 1997, routine collocated SFMR and GPS surface wind estimates have been made. During the 1998, 1999, and 2001 hurricane seasons, a total of 249 paired samples were acquired and compared. The SFMR equivalent 1-min mean, 10-m level neutral stability winds were found to be biased high by 2.3 m s−1 relative to the 10-m GPS winds computed from an estimate of the mean boundary layer wind. Across the range of wind speeds from 10 to 60 m s−1, the rmse was 3.3 m s−1. The bias was found to be dependent on storm quadrant and independent of wind speed, a result that suggests a possible relationship between microwave brightness temperatures and surface wave properties. Tests of retrieved winds' sensitivities to sea surface temperature, salinity, atmospheric thermodynamic variability, and surface wind direction indicate wind speed errors of less than 1 m s−1 above 15 m s−1.

Corresponding author address: Eric W. Uhlhorn, University of Miami, RSMAS/CIMAS, 4301 Rickenbacker Cswy., Miami, FL 33149. Email: Eric.Uhlhorn@noaa.gov

Save