• Austin, R. W., 1974: The remote sensing of spectral radiance from below the ocean surface. Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, Eds., Academic Press, 317–344.

    • Search Google Scholar
    • Export Citation
  • Fougnie, B., , Deschamp P-Y. , , and Frouin R. , 1999: Vicarious calibration of the POLDER ocean color spectral bands using in situ measurements. Trans. IEEE Trans. Geosci. Remote Sens., 37 , 15671574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, H. R., 1985: Ship perturbation of irradiance measurements at sea. 1: Monte Carlo simulations. Appl. Opt., 24 , 41724182.

  • Hooker, S. B., , and Esaias W. E. , 1993: An overview of the SeaWiFS project. EOS Trans. Amer. Geophys. Union, 74 , 241246.

  • Hooker, S. B., , and Aiken J. , 1998: Calibration evaluation and radiometric testing of field radiometers with the SeaWiFS Quality Monitor (SQM). J. Atmos. Oceanic Technol., 15 , 9951007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hooker, S. B., , and Lazin G. , 2000: The SeaBOARR-99 Field Campaign. NASA Tech. Memo. 2000-206892, Vol. 8, S. B. Hooker and E. R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Hooker, S. B., , and Maritorena S. , 2000: An evaluation of oceanographic radiometers and deployment methodologies. J. Atmos. Oceanic Technol., 17 , 811830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hooker, S. B., , and McClain C. R. , 2000: The Calibration and Validation of SeaWiFS Data. Progress in Oceanography, Vol. 45, Pergamon, 427–465.

    • Search Google Scholar
    • Export Citation
  • Hooker, S. B., , Zibordi G. , , Lazin G. , , and McLean S. , 1999: The SeaBOARR-98 Field Campaign. NASA Tech. Memo. 1999-206892, Vol. 3, S. B. Hooker and E. R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Hooker, S. B., , Zibordi G. , , Berthon J-F. , , D'Alimonte D. , , Maritorena S. , , McLean S. , , and Sildam J. , 2001: Results of the Second SeaWiFS Data Analysis Round Robin, March 2000 (DARR-00). NASA Tech. Memo. 2001-206892, Vol. 15, S. B. Hooker and E. R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 71 pp.

    • Search Google Scholar
    • Export Citation
  • Hooker, S. B., , Lazin G. , , Zibordi G. , , and McLean S. , 2002a: An evaluation of above- and in-water methods for determining water-leaving radiances. J. Atmos. Oceanic Technol., 19 , 486515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hooker, S. B., , McLean S. , , Sherman J. , , Small M. , , Zibordi G. , , and Brown J. , 2002b: The Seventh SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-7), March 1999. NASA Tech. Memo. 2002-206892, Vol. 17, S. B. Hooker and E. R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 69 pp.

    • Search Google Scholar
    • Export Citation
  • IOCCG, 1998: Minimum requirements for an operational ocean-colour sensor for the open ocean. International Ocean-Colour Coordinating Group Rep. 1, IOCCG, Nova Scotia, Canada, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Loisel, H., , and Morel A. , 1998: Light scattering and chlorophyll concentration in case 1 waters: A reexamination. Limnol. Oceanogr., 43 , 847858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mobley, C. D., 1999: Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt., 38 , 74427455.

  • Morel, A., 1980: In-water and remote measurements of ocean color. Bound.-Layer Meteor., 18 , 177201.

  • Morel, A., , and Gentili B. , 1996: Diffuse reflectance of oceanic waters, III. Implication of bidirectionality for the remote sensing problem. Appl. Opt., 35 , 48504862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, J. L., 2000a: Overview of measurement and data analysis protocols. NASA Tech. Memo. 2000-209966, Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion, and J. L. Mueller, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 65–86.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. L., 2000b: In-water radiometric profile measurements and data analysis protocols. NASA Tech. Memo. 2000-209966, Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion and J. L. Mueller, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 87–97.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. L., , and Austin R. W. , 1992: Ocean Optics Protocols for SeaWiFS Validation. NASA Tech. Memo. 104566, Vol. 5, S. B. Hooker and E. R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. L., , and Austin R. W. , 1995: Ocean Optics Protocols for SeaWiFS Validation, Revision 1. NASA Tech. Memo. 104566, Vol. 25, S. B. Hooker, E. R. Firestone, and J. G. Acker, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 66 pp.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. L., and Coauthors. 2000: Above-water radiance and remote sensing reflectance measurement and analysis protocols. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2. NASA Tech. Memo. 2000-209966, G. S. Fargion and J. L. Mueller, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 98–107.

    • Search Google Scholar
    • Export Citation
  • O'Reilly, J. R., , Maritorena S. , , Mitchell B. G. , , Siegel D. A. , , Carder K. L. , , Garver S. A. , , Kahru M. , , and McClain C. , 1998: Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103 , 2493724953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegel, D. A., , Wang M. H. , , Maritorena S. , , and Robinson W. , 2000: Atmospheric correction of satellite ocean color imagery: The black pixel assumption. Appl. Opt., 39 , 35823591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. C., , and Baker K. S. , 1984: The analysis of ocean optical data. Ocean Optics VII, M. A. Blizard, Ed., Vol. 478, SPIE, 119–126.

    • Search Google Scholar
    • Export Citation
  • Toole, D. A., , Siegel D. A. , , Menzies D. W. , , Neumann M. J. , , and Smith R. C. , 2000: Remote sensing reflectance determinations in the coastal ocean environment—Impact of instrumental characteristics and environmental variability. Appl. Opt., 39 , 456469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voss, K. J., , Nolten J. W. , , and Edwards G. D. , 1986: Ship shadow effects on apparent optical properties. Ocean Optics XII, J. S. Jaffe, Ed., Vol. 2258, SPIE, 815–821.

    • Search Google Scholar
    • Export Citation
  • Weir, C. T., , Siegel D. A. , , Michaels A. F. , , and Menzies D. W. , 1994: In situ evaluation of a ship's shadow. Ocean Optics VIII, M. A. Blizzard, Ed., Vol. 637, SPIE, 186–190.

    • Search Google Scholar
    • Export Citation
  • Zaneveld, J. R. V., , Boss E. , , and Barnard A. , 2001: Influence of surface waves on measured and modeled irradiance profiles. Appl. Opt., 40 , 14421449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zibordi, G., , Doyle J. P. , , and Hooker S. B. , 1999: Offshore tower shading effects on in-water optical measurements. J. Atmos. Oceanic Technol., 16 , 17671779.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 224 224 4
PDF Downloads 17 17 1

Platform and Environmental Effects on Above-Water Determinations of Water-Leaving Radiances

View More View Less
  • 1 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Université Pierre et Marie Curie/CNRS, Villefranche-sur-Mer, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A comparison of above- and in-water spectral measurements in Case-1 conditions showed the uncertainty in above-water determinations of water-leaving radiances depended on the pointing angle of the above-water instruments with respect to the side of the ship. Two above-water data processing methods were used to create a diagnostic variable (formulated for Case-1 waters only) to quantify the presence of superstructure reflections that degraded the above-water intracomparisons of water-leaving radiances by as much as 13%–27% (for far-to-near viewing distances, respectively). The primary conclusions of the above- and in-water intercomparison of water-leaving radiances were as follows: (a) the SeaWiFS 5% radiometric objective was achieved with the in-water instruments; (b) the above-water approach produced agreement to within 5%, but reliably for about half the data, and only with well-controlled procedures and severe filtering to remove glint contamination; (c) a decrease in water-leaving radiance values was seen in the presence of swell, although, wave crests were radiometrically brighter than the troughs; and (d) standard band ratios used in ocean color algorithms remained severely affected, because of the relatively low signal at 555 nm and, thus, proportionally significant ship contamination at this wavelength. Suggestions for a more precise above-water measurement protocol are tentatively proposed.

Corresponding author address: Dr. Stanford B. Hooker, NASA GSFC, Code 970.2, Greenbelt, MD 20771. Email: stan@ardbeg.gsfc.nasa.gov

Abstract

A comparison of above- and in-water spectral measurements in Case-1 conditions showed the uncertainty in above-water determinations of water-leaving radiances depended on the pointing angle of the above-water instruments with respect to the side of the ship. Two above-water data processing methods were used to create a diagnostic variable (formulated for Case-1 waters only) to quantify the presence of superstructure reflections that degraded the above-water intracomparisons of water-leaving radiances by as much as 13%–27% (for far-to-near viewing distances, respectively). The primary conclusions of the above- and in-water intercomparison of water-leaving radiances were as follows: (a) the SeaWiFS 5% radiometric objective was achieved with the in-water instruments; (b) the above-water approach produced agreement to within 5%, but reliably for about half the data, and only with well-controlled procedures and severe filtering to remove glint contamination; (c) a decrease in water-leaving radiance values was seen in the presence of swell, although, wave crests were radiometrically brighter than the troughs; and (d) standard band ratios used in ocean color algorithms remained severely affected, because of the relatively low signal at 555 nm and, thus, proportionally significant ship contamination at this wavelength. Suggestions for a more precise above-water measurement protocol are tentatively proposed.

Corresponding author address: Dr. Stanford B. Hooker, NASA GSFC, Code 970.2, Greenbelt, MD 20771. Email: stan@ardbeg.gsfc.nasa.gov

Save