• Atlas, D., Srivastava R. C. , and Sekhon R. S. , 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11 , 135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, M. L., Burpee R. W. , and Marks F. D. , 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53 , 18871909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carswell, J. R., Knapp E. J. , Chang P. S. , Black P. D. , and Marks F. D. , 2000: Limitations of scatterometry high wind speed retrieval. Proc. International Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 1226–1228.

    • Search Google Scholar
    • Export Citation
  • Caylor, I. J., Heymsfield G. M. , Meneghini R. , and Miller L. S. , 1997: Correction of sampling errors in ocean surface cross-sectional estimates from nadir-looking weather radar. J. Atmos. Oceanic Technol., 14 , 203210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, W. J., Carswell J. R. , McIntosh R. E. , Chang P. S. , Wilkerson J. , Marks F. , and Black P. G. , 1999: Revised ocean backscatter models at C- and Ku-band under high-wind conditions. J. Geophys. Res., 104 , 1148511497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnic D. S. , 1984: Doppler Radar and Weather Observations. Academic Press, 458 pp.

  • Durden, S. L., and Vesecky J. F. , 1985: A physical radar cross-section model for a wind-driven sea with swell. IEEE J. Oceanic Eng., OE-10 , 445451.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., and Haddad Z. S. , 1998: Comparison of radar rainfall retrieval algorithms in convective rain during TOGA COARE. J. Atmos. Oceanic Technol., 15 , 10911096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durden, S. L., Im E. , Li F. K. , Ricketts W. , Tanner A. , and Wilson W. , 1994: ARMAR: An airborne rain mapping radar. J. Atmos. Oceanic Technol., 11 , 727737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durden, S. L., Haddad Z. S. , Im E. , Kitiyakara A. , Li F. K. , Tanner A. B. , and Wilson W. J. , 1995: Measurement of rainfall path attenuation near nadir: A comparison of radar and radiometer methods at 13.8 GHz. Radio Sci., 30 , 943947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durden, S. L., Kitiyakara A. , Im E. , Tanner A. B. , Haddad Z. S. , Li F. K. , and Wilson W. J. , 1997: ARMAR observations of the melting layer during TOGA COARE. IEEE Trans. Geosci. Remote Sens., 35 , 14531456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durden, S. L., Haddad Z. S. , and Bui T. P. , 1999: Correction of Doppler radar data for aircraft motion using surface measurements and recursive least-squares estimation. J. Atmos. Oceanic Technol., 16 , 20262029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and Coauthors. 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13 , 795809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Moore R. K. , 1990: Meteorological radar observations from mobile platforms. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 287–314.

    • Search Google Scholar
    • Export Citation
  • Holland, G., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108 , 12121218.

  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 20382052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozu, T., and Coauthors. 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 39 , 102116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W-C., Jou B. J-D. , Chang P-L. , and Deng S-M. , 1999: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler velocity patterns and the GBVTD technique. Mon. Wea. Rev., 127 , 24192439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., Im E. , Durden S. L. , and Haddad Z. S. , 2002: A surface wind model-based method to estimate rain-induced radar path attenuation over ocean. J. Atmos. Oceanic Technol., 19 , 658672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Iguchi T. , Kozu T. , Liao L. , Okamoto K. , Jones J. A. , and Kwiatkowski J. , 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39 , 20532070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1980: Evaluations of diagnostic marine boundary-layer models applied to hurricanes. Mon. Wea. Rev., 108 , 757766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and Houston S. H. , 1996: Hurricane Andrew's landfall in south Florida. Part II: Surface wind fields and potential real-time applications. Wea. Forecasting, 11 , 329349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, L. C., Schaffner P. R. , Mitchell J. L. , and Jones W. L. , 1985: AAFE RADSCAT 13. 9-GHz measurements and analysis: Wind-speed signature of the ocean. IEEE J. Oceanic Eng., OE-10 , 346357.

    • Search Google Scholar
    • Export Citation
  • Strang, G., 1973: Linear Algebra and Its Applications. Academic Press, 374 pp.

  • Wentz, F. J., and Smith D. K. , 1999: A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104 , 1149911514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., Peteherych S. , and Thomas L. A. , 1984: A model function for ocean radar cross sections at 14.6 GHz. J. Geophys. Res., 89 , 36893704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1993: An estimate of the Geosat altimeter wind speed algorithm at high wind speeds. J. Geophys. Res., 98 , 2027520285.

  • Yueh, S. H., West R. , Li F. K. , Tsai W. Y. , and Lay R. , 2000: Dual-polarized Ku-band backscatter signatures of hurricane ocean winds. IEEE Trans. Geosci. Remote Sens., 38 , 7388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., Stiles B. W. , Tsai W-Y. , Hu H. , and Liu W. T. , 2001: QuikSCAT geophysical model function for tropical cyclones and application to Hurricane Floyd. IEEE Trans. Geosci. Remote Sens., 39 , 26012612.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 34 2
PDF Downloads 50 30 0

A Surface Reference Technique for Airborne Doppler Radar Measurements in Hurricanes

S. L. DurdenJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by S. L. Durden in
Current site
Google Scholar
PubMed
Close
,
L. LiJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by L. Li in
Current site
Google Scholar
PubMed
Close
,
E. ImJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by E. Im in
Current site
Google Scholar
PubMed
Close
, and
S. H. YuehJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by S. H. Yueh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The operational algorithm for rainfall retrieval from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar data requires a measurement of the path-integrated attenuation (PIA) as a constraint. This constraint is derived via the surface reference technique, whereby a measurement of the ocean surface in a raining area is compared with the ocean surface backscatter in a neighboring clear area. This method assumes that the surface backscatter difference is due only to the presence of rain, although variation in surface winds could also cause differences in the reference and rain measurements. An alternative surface reference method is to use a measurement of the surface winds and a backscatter model to predict the rain-free, or reference, cross section. Such an approach is developed here for airborne Doppler radar measurements in hurricanes. This approach provides an independent measurement of the reference backscatter, which is compared with the standard clear-air reference. The mean difference between the standard and Doppler-derived PIA is less than or equal to 1 dB; the rms difference is in the range 0.9–2.6 dB. In deriving the model function for backscatter estimation from wind measurements, the authors also find that the dependence of ocean backscatter on wind appears to saturate at high wind speeds at 25° incidence.

Corresponding author address: Dr. S. L. Durden, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109

Abstract

The operational algorithm for rainfall retrieval from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar data requires a measurement of the path-integrated attenuation (PIA) as a constraint. This constraint is derived via the surface reference technique, whereby a measurement of the ocean surface in a raining area is compared with the ocean surface backscatter in a neighboring clear area. This method assumes that the surface backscatter difference is due only to the presence of rain, although variation in surface winds could also cause differences in the reference and rain measurements. An alternative surface reference method is to use a measurement of the surface winds and a backscatter model to predict the rain-free, or reference, cross section. Such an approach is developed here for airborne Doppler radar measurements in hurricanes. This approach provides an independent measurement of the reference backscatter, which is compared with the standard clear-air reference. The mean difference between the standard and Doppler-derived PIA is less than or equal to 1 dB; the rms difference is in the range 0.9–2.6 dB. In deriving the model function for backscatter estimation from wind measurements, the authors also find that the dependence of ocean backscatter on wind appears to saturate at high wind speeds at 25° incidence.

Corresponding author address: Dr. S. L. Durden, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109

Save