• Banakh, V. A., Smalikho I. N. , Köpp F. , and Werner C. , 1995: Representativeness of wind measurements with a cw Doppler lidar in the atmospheric boundary layer. Appl. Opt., 34 , 20552067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banakh, V. A., Smalikho I. N. , and Werner C. , 2000: Numerical simulation of the effect of refractive turbulence on coherent lidar return statistics in the atmosphere. Appl. Opt., 39 , 54035414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banakh, V. A., Smalikho I. N. , Krivolutskii N. P. , Werner C. , Leike I. , Streicher J. , Wergen W. , and Cress A. , 2001: Simulation of retrieval of wind profile from data of scanning spaceborn coherent Doppler lidar. Proc. 11th Coherent Laser Radar Conf., Malvern, Worcestershire, United Kingdom, Defence Evaluation and Research Agency, 216–219.

    • Search Google Scholar
    • Export Citation
  • Clifford, S. F., and Wandzura S. , 1981: Monostatic heterodyne lidar performance: The effect of the turbulent atmosphere. Appl. Opt., 20 , 512516.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnic D. S. , 1984: Doppler Radar and Weather Observations. Academic Press, 458 pp.

  • Frehlich, R. G., and Kavaya M. J. , 1991: Coherent laser radar performance for general atmospheric refractive turbulence. Appl. Opt., 30 , 53255352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., and Yadlowsky M. J. , 1994: Performance of mean-frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol., 11 , 12171230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrich, R. K., Morse C. S. , Cornman L. B. , and Cohn S. A. , 2002: A horizontal wind and wind confidence algorithm for Doppler wind profilers. J. Atmos. Oceanic Technol., 19 , 257273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, F. F., Huffaker R. M. , Hardesty R. M. , Jackson M. E. , Lawrence T. R. , Post M. J. , Richter R. A. , and Weber B. F. , 1984: Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar. Appl. Opt., 23 , 25032506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardesty, R. M., 1986: Performance of a discrete spectral peak frequency estimator for Doppler wind velocity measurements. IEEE Trans. Geosci. Remote Sens., 24 , 777783.

    • Search Google Scholar
    • Export Citation
  • Hawley, J. G., Tang R. , Henderson S. W. , Hale C. P. , Kavaya M. J. , and Moerder D. , 1993: Coherent launch-site atmospheric wind sounder: Theory and experiment. Appl. Opt., 32 , 45574567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helstrom, C. W., 1968: Statistical Theory of Signal Detection. Pergamon Press, 470 pp.

  • Köpp, F., Werner C. , Häring R. , Banakh V. A. , Smalikho I. N. , and Kambezidis H. , 1994: Laser Doppler wind measurements in the planetary boundary layer. Beitr. Phys. Atmos., 67 , 269286.

    • Search Google Scholar
    • Export Citation
  • Levin, J. M., 1965: Power spectrum parameter estimation. IEEE Trans. Inf. Theory, 11 , 100107.

  • Lhermitte, R. M., and Atlas D. , 1961: Precipitation motion by pulse Doppler. Proc. Ninth Weather Radar Conf., Kansas City, MO, Amer. Meteor. Soc., 218–223.

    • Search Google Scholar
    • Export Citation
  • Mahapatra, P. R., and Zrnic D. S. , 1983: Practical algorithms for mean velocity estimation in pulse Doppler weather radars using a small number of samples. IEEE Trans. Geosci. Electron., 21 , 491501.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and Strauch R. G. , 1989: An examination of wind profiler signal processing algorithms. J. Atmos. Oceanic Technol., 6 , 731735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merritt, D. A., 1995: A statistical averaging method for wind profiler Doppler spectra. J. Atmos. Oceanic Technol., 12 , 985995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1993a: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer–Rao lower bound. IEEE Trans. Geosci. Remote Sens., 31 , 1627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1993b: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II: Correlogram accumulation. IEEE Trans. Geosci. Remote Sens., 31 , 2835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1997: Detecting techniques for validating Doppler estimates in heterodyne lidar. Appl. Opt., 36 , 19401951.

  • Schwiesow, R. L., Köpp F. , and Werner C. , 1985: Comparison of CW-lidar-measured wind values obtained by full conical scan, conical sector scan and two-point techniques. J. Atmos. Oceanic Technol., 2 , 314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Trees, H. L., 1968: Detection, Estimation, and Modulation Theory, Part I. John Wiley and Sons, 697 pp.

  • Werner, C., 1985: Fast sector scan and pattern recognition for a cw laser Doppler anemometer. Appl. Opt., 24 , 35573564.

  • Werner, C., and Coauthors. 2001: Wind infrared Doppler lidar instrument. Opt. Eng., 40 , 116125.

  • Zrnic, D. S., 1979: Estimation of spectral moments of weather echoes. IEEE Trans. Geosci. Electron., 17 , 113128.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 556 137 16
PDF Downloads 394 126 16

Techniques of Wind Vector Estimation from Data Measured with a Scanning Coherent Doppler Lidar

Igor SmalikhoInstitute of Atmospheric Physics, DLR, Wessling, Germany

Search for other papers by Igor Smalikho in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The results of a theoretical study of the feasibility of wind velocity vector estimation from data, measured with a scanning coherent Doppler lidar, are presented. The estimation techniques considered are (a) the direct sine wave fitting (DSWF) and the filtered sine wave fitting (FSWF), where at first the radial wind velocities are estimated and then the wind vector is estimated from the dependence of the radial velocity versus the azimuth angle of the scanning; and (b) the maximum of the function of accumulated spectra (MFAS) and the maximum likelihood for the wind vector estimation (WV ML), where the wind vector is estimated directly from data measured by a scanning lidar without intermediate estimation of the radial wind velocities.

It has been shown that due to strong averaging of noise fluctuations in accumulated spectra, the WV ML and MFAS techniques allow one to estimate the wind vector with acceptable accuracy at an essentially lower signal-to-noise ratio (SNR) than the methods of the sine wave fitting, where noise can be the source of many spurious estimates of the radial wind velocity.

The ability to find optimal criterion (in the case of MFAS) for acceptance or rejection of the wind vector estimate has been analyzed. The amount of measured data needed for spectral accumulation in order to realize optimal performance has been calculated.

Corresponding author address: Dr. Igor Smalikho, Institute of Atmospheric Physics, DLR, Oberpfaffenhofen, Postfach 1116, Wessling D-82230, Germany. Email: Igor.Smalikho@dlr.de

Abstract

The results of a theoretical study of the feasibility of wind velocity vector estimation from data, measured with a scanning coherent Doppler lidar, are presented. The estimation techniques considered are (a) the direct sine wave fitting (DSWF) and the filtered sine wave fitting (FSWF), where at first the radial wind velocities are estimated and then the wind vector is estimated from the dependence of the radial velocity versus the azimuth angle of the scanning; and (b) the maximum of the function of accumulated spectra (MFAS) and the maximum likelihood for the wind vector estimation (WV ML), where the wind vector is estimated directly from data measured by a scanning lidar without intermediate estimation of the radial wind velocities.

It has been shown that due to strong averaging of noise fluctuations in accumulated spectra, the WV ML and MFAS techniques allow one to estimate the wind vector with acceptable accuracy at an essentially lower signal-to-noise ratio (SNR) than the methods of the sine wave fitting, where noise can be the source of many spurious estimates of the radial wind velocity.

The ability to find optimal criterion (in the case of MFAS) for acceptance or rejection of the wind vector estimate has been analyzed. The amount of measured data needed for spectral accumulation in order to realize optimal performance has been calculated.

Corresponding author address: Dr. Igor Smalikho, Institute of Atmospheric Physics, DLR, Oberpfaffenhofen, Postfach 1116, Wessling D-82230, Germany. Email: Igor.Smalikho@dlr.de

Save