Mesoscale Correlation Length Scales from NSCAT and Minimet Surface Wind Retrievals in the Labrador Sea

R. F. Milliff Colorado Research Associates, NorthWest Research Associates, Boulder, Colorado

Search for other papers by R. F. Milliff in
Current site
Google Scholar
PubMed
Close
,
P. P. Niiler Scripps Institution of Oceanography, La Jolla, California

Search for other papers by P. P. Niiler in
Current site
Google Scholar
PubMed
Close
,
J. Morzel Colorado Research Associates, Boulder, Colorado

Search for other papers by J. Morzel in
Current site
Google Scholar
PubMed
Close
,
A. E. Sybrandy Pacific Gyre Corporation, Carlsbad, California

Search for other papers by A. E. Sybrandy in
Current site
Google Scholar
PubMed
Close
,
D. Nychka National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. Nychka in
Current site
Google Scholar
PubMed
Close
, and
W. G. Large National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by W. G. Large in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Observations of the surface wind speed and direction in the Labrador Sea for the period October 1996–May 1997 were obtained by the NASA scatterometer (NSCAT), and by 21 newly developed Minimet drifting buoys. Minimet wind speeds are inferred, hourly, from observations of acoustic pressure in the Wind-Speed Observation Through Ambient Noise (WOTAN) technology. Wind directions are inferred from a direction histogram, also accumulated hourly, as determined by the orientation of a wind vane attached to the surface floatation. Effective temporal averaging of acoustic pressure (20 min), and the interval over which the direction histogram is accumulated (160 s), are shown to be consistent with low-pass filtering to preserve mesoscale time- and space-scale signals in the surface wind. Minimet wind speed and direction retrievals in the Labrador Sea were calibrated with collocated NSCAT data. The NSCAT calibrations extend over the full field lifetimes of each Minimet (90 days on average). Wind speed variabilities of O(5 m s–1) and wind direction variabilities of O(40°) are evident on timescales of one to several hours in Minimet time series. Wind speed and direction rms differences versus spatial separation comparisons (from 0 to 400 km) for the NSCAT and Minimet records demonstrate similar rms differences in wind speed as a function of spatial separation, but O(20°) larger rms differences in Minimet direction. These differences are consistent with spatial smoothing effects in the median filter step for wind direction retrievals within the NSCAT swath. Zonal and meridional surface wind components are constructed from the calibrated Minimet wind speed and direction dataset. Rms differences versus spatial separation for these components are used to estimate mesoscale spatial correlation length scales of 250 and 290 km in the zonal and meridional directions, respectively.

Corresponding author address: Dr. Ralph F. Milliff, Colorado Research Associates, 3380 Mitchell Ln, Boulder, CO 80301-5410. Email: miliff@coloradoresearch.com

Abstract

Observations of the surface wind speed and direction in the Labrador Sea for the period October 1996–May 1997 were obtained by the NASA scatterometer (NSCAT), and by 21 newly developed Minimet drifting buoys. Minimet wind speeds are inferred, hourly, from observations of acoustic pressure in the Wind-Speed Observation Through Ambient Noise (WOTAN) technology. Wind directions are inferred from a direction histogram, also accumulated hourly, as determined by the orientation of a wind vane attached to the surface floatation. Effective temporal averaging of acoustic pressure (20 min), and the interval over which the direction histogram is accumulated (160 s), are shown to be consistent with low-pass filtering to preserve mesoscale time- and space-scale signals in the surface wind. Minimet wind speed and direction retrievals in the Labrador Sea were calibrated with collocated NSCAT data. The NSCAT calibrations extend over the full field lifetimes of each Minimet (90 days on average). Wind speed variabilities of O(5 m s–1) and wind direction variabilities of O(40°) are evident on timescales of one to several hours in Minimet time series. Wind speed and direction rms differences versus spatial separation comparisons (from 0 to 400 km) for the NSCAT and Minimet records demonstrate similar rms differences in wind speed as a function of spatial separation, but O(20°) larger rms differences in Minimet direction. These differences are consistent with spatial smoothing effects in the median filter step for wind direction retrievals within the NSCAT swath. Zonal and meridional surface wind components are constructed from the calibrated Minimet wind speed and direction dataset. Rms differences versus spatial separation for these components are used to estimate mesoscale spatial correlation length scales of 250 and 290 km in the zonal and meridional directions, respectively.

Corresponding author address: Dr. Ralph F. Milliff, Colorado Research Associates, 3380 Mitchell Ln, Boulder, CO 80301-5410. Email: miliff@coloradoresearch.com

Save
  • Atlas, R., Bloom S. C. , Hoffman R. N. , Brin E. , Ardizzone J. , Terry J. , Bungato D. , and Jusem J. C. , 1999: Geophysical validation of NSCAT winds using atmospheric data analyses. J. Geophys. Res., 104 , 1140511424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, S., and Pierson W. J. , 1999: Mesoscale and synoptic-scale effects on the validation of NSCAT winds by means of buoy reports. J. Geophys. Res., 104 (C5) 1143711447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berliner, L. M., Milliff R. F. , and Wikle C. K. , 2003: Bayesian hierarchical modelling of air–sea interaction. J. Geophys. Res., 108 .doi:10.1029/2002JC001413.

    • Search Google Scholar
    • Export Citation
  • Bourassa, S. L., 1984: Measurement of oceanic wind speed using acoustic ambient sea noise. Masters thesis, Graduate School of Oceanography, University of Rhode Island, 106 pp.

    • Search Google Scholar
    • Export Citation
  • Bourassa, S. L., Freilich M. H. , Legler D. M. , Liu W. T. , and O'Brien J. J. , 1997: Wind observations from new satellite and research vessels agree. EOS, Trans. Amer. Geophys. Union, 78 , 597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 2000: On satellite scatterometer model functions. J. Geophys. Res., 105 (D23) 2919529205.

  • Dickinson, S., Kelly K. A. , Caruso M. J. , and McPhaden M. J. , 2001: Comparisons between the TAO buoy and NASA scatterometer wind vectors. J. Atmos. Oceanic Technol., 18 , 799806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and Lemon D. D. , 1984: The influence of bubbles on ambient noise in the ocean and high wind speeds. J. Phys. Oceanogr., 14 , 17611777.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and Vagle S. , 1989: Waveguide propagation of ambient sound in the ocean surface bubble layer. J. Acoust. Soc. Amer., 86 , 18971908.

  • Freilich, M. H., and Dunbar R. S. , 1993a: Derivation of satellite wind model functions using operational surface wind analyses: An altimeter example. J. Geophys. Res., 98 , 1463314649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and Dunbar R. S. , 1993b: A preliminary C-band scatterometer model function for the ERS-1 AMI instrument. Proc. of the First ERS-1 Symposium, European Space Agency, Special Publication ESA SP-359, 79–84.

    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and Challenor P. G. , 1994: A new approach for determining fully empirical altimeter wind speed model functions. J. Geophys. Res., 99 , 2505125062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and Dunbar R. S. , 1999: The accuracy of the NSCAT 1 vector winds: Comparisons with National Data Buoy Center buoys. J. Geophys. Res., 104 , 1123111246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzales, A. E., and Long D. G. , 1999: An assessment of NSCAT ambiguity removal. J. Geophys. Res., 104 (C5) 1144911457.

  • Isaaks, E. H., and Srivastava R. M. , 1989: An Introduction to Applied Geostatistics. Oxford University Press, 561 pp.

  • Jones, W. L., Schroeder L. C. , Boggs D. H. , Bracalente E. M. , Brown R. A. , Dame G. J. , Pierson W. J. , and Wentz F. J. , 1982: The Seasat-A satellite scatterometer: The geophysical evaluation of remotely sensed wind vectors over the ocean. J. Geophys. Res., 87 (C5) 32973317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, W. L., Cardone V. J. , Pierson W. J. , Zec J. , Rice L. P. , Cox A. , and Sylvester W. B. , 1999: NSCAT high-resolution surface wind measurements in Typhoon Violet. J. Geophys. Res., 104 (C5) 1124711259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., Wyngaard J. C. , Izumi Y. , and Cote O. R. , 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98 , 563589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knudsen, V. O., Alford R. S. , and Emling J. W. , 1948: Underwater ambient noise. J. Mar. Res., 22 , 410429.

  • Lab Sea Group, 1998: The Labrador Sea deep convection experiment. Bull. Amer. Meteor. Soc., 79 , 20332058.

  • Large, W. G., Morzel J. , and Crawford G. B. , 1995: Accounting for surface wave distortion of the marine wind profile in low-level Ocean Storms wind measurements. J. Phys. Oceanogr., 25 , 29592971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, D. D., Farmer D. M. , and Watts D. R. , 1984: Acoustic measurements of wind speed and precipitation over a continental shelf. J. Geophys. Res., 89 , 34623472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., Tang W. , and Polito P. S. , 1998: NASA scatterometer provides global ocean surface wind fields with more structures than numerical weather prediction. Geophys. Res. Lett., 25 , 761764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumley, J. I., and Panofsky H. A. , 1964: The Structure of Atmospheric Turbulence. John Wiley and Sons, 239 pp.

  • Mejia, C., Badran F. , Bentamy A. , Crepon M. , Thiria S. , and Tran N. , 1999: Determination of the geophysical model function of NSCAT and its corresponding variance by the use of neural networks. J. Geophys. Res., 104 , 1153911556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., Freilich M. H. , Liu W. T. , Atlas R. , and Large W. G. , 2001: Global ocean surface vector wind observations from space. Observing the Oceans in the 21st Century, C. J. Koblinsky and N. R. Smith, Eds., GODAE Project Office and Bureau of Meteorology, 102–119.

    • Search Google Scholar
    • Export Citation
  • Naderi, F. M., Freilich M. H. , and Long D. G. , 1991: Spaceborne measurement of wind velocity over the ocean: An overview of the NSCAT scatterometer system. Proc. IEEE, 79 , 850866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA Scatterometer Project, 1998: Science data product (NSCAT-2) user's manual: Overview and geophysical data products, Version 1.2. Jet Propulsion Laboratory, California Institute of Technology, D-12985, 78 pp.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., Davis R. E. , and White H. J. , 1987: Water-following characteristics of a mixed layer drifter. Deep-Sea Res., 34 , 18671881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., Sybrandy A. L. , Bi K. , Poulain P. , and Bitterman D. , 1995: Measurements of the water-following capability of Holey-sock and TRISTAR drifters. Deep-Sea Res., 42A , 19511964.

    • Search Google Scholar
    • Export Citation
  • Nystuen, J. A., and Selsor H. D. , 1997: Weather Classification using passive acoustic drifters. J. Atmos. Oceanic Technol., 14 , 656666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O'Brien, J. J., 1999: Preface: Special section on NSCAT validation and science. J. Geophys. Res., 104C , 11229.

  • Pagowski, M., and Moore G. W. K. , 2001: A numerical study of an extreme cold-air outbreak over the Labrador Sea: Sea, ice, air–sea interaction, and development of polar lows. Mon. Wea. Rev., 129 , 4772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., 1983: The measurement of the synoptic scale wind over the ocean. J. Geophys. Res., 88 , 16831708.

  • Renfrew, I. A., and Moore G. W. K. , 1999: An extreme cold air outbreak over the Labrador Sea: Roll vortices and air–sea interaction. Mon. Wea. Rev., 127 , 23792394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., Moore G. W. K. , Holt T. R. , Chang S. W. , and Guest P. , 1999: Mesoscale forecasting during a field program: Meteorological support of the Labrador Sea Deep Convection Experiment. Bull. Amer. Meteor. Soc., 80 , 605620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Royle, J. A., Berliner L. M. , Wikle C. K. , and Milliff R. F. , 1999: A hierarchical spatial model for constructing wind fields from scatterometer data in the Labrador Sea. Case Studies in Bayesian Statistics, C. Gatsonis et al., Eds., Springer-Verlag, 367–382.

    • Search Google Scholar
    • Export Citation
  • Schlax, M. G., Chelton D. B. , and Freilich M. H. , 2001: Sampling errors in wind fields constructed from single and tandem scatterometer datasets. J. Atmos. Oceanic Technol., 18 , 10141036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaffer, S. J., Dunbar R. S. , Hsiao S. V. , and Long D. G. , 1991: A median-filter-based ambiguity removal algorithm for NSCAT. IEEE Trans. Geosci. Remote Sens., 29 , 167174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shultz, H., 1990: A circular median filter for resolving directional ambiguities retrieved from spaceborne scatterometer data. J. Geophys. Res., 95 , 52915303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, N. R., and Koblinsky C. J. , 2001: The ocean observing system for the 21st century: A consensus statement. Observing the Oceans in the 21st Century, C. J. Koblinsky and N. R. Smith, Eds., GODAE Project Office and Bureau of Meteorology, 1–25.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., and Anderson D. , 1997: Scatterometer data interpretation: Measurement space and inversion. J. Atmos. Oceanic Technol., 14 , 12981313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sybrandy, A. L., and Niiler P. P. , 1991: The WOCE/TOGA Lagrangian drifter construction manual. University of California, San Diego, SIO 91-6, WOCE Rep. 63, 58 pp.

    • Search Google Scholar
    • Export Citation
  • Sybrandy, A. L., Martin C. , Niiler P. P. , Charpentier E. , and Meldrum D. T. , 1995: WOCE surface velocity programme barometer drifter construction manual, Version 1.0. Data Buoy Co-operation Panel Tech. Doc. 4, SIO 95-27, WOCE Rep. 34/95.

    • Search Google Scholar
    • Export Citation
  • Vagle, S., Large W. G. , and Farmer D. M. , 1990: An evaluation of the WOTAN technique of inferring oceanic winds from underwater ambient sound. J. Atmos. Oceanic Technol., 7 , 576595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vakkayil, R., Graber H. C. , and Large W. G. , 1996: Ambient noise measurements with WOTAN during the Surface Wave Dynamics Experiment (SWADE). Tech. Rep. RSMAS 96-004, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 66 pp.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., Payne R. E. , Large W. G. , and Zenk W. , 1983: Wind measurements from an array of oceanographic moorings and from F/S Meteor during JASIN 1978. J. Geophys. Res., 88 (C14) 96899705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and Smith D. , 1999: A model function for the ocean-normalized radar cross section at 14.6 GHz derived from NSCAT observations. J. Geophys. Res., 104 , 1149911514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., Peteherych S. , and Thomas L. A. , 1984: A model function for ocean radar cross sections at 14.6 GHz. J. Geophys. Res., 89 , 36893704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., Mattox L. A. , and Peteherych S. , 1986: New algorithms for microwave measurements of ocean winds: Applications to Seasat and the Special Sensor Microwave Imager. J. Geophys. Res., 91 , 22892307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wikle, C. K., Berliner L. M. , and Cressie N. , 1998: Hierarchical Bayesian space–time models. J. Environ. Ecol. Stat., 5 , 117154.

  • Wikle, C. K., Milliff R. F. , Nychka D. , and Berliner L. M. , 2001: Spatiotemporal hierarchical Bayesian modeling: Tropical ocean surface winds. J. Amer. Stat. Assoc., 96 , 382397.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 374 160 51
PDF Downloads 106 47 4