The Relationship between Winds, Surface Roughness, and Radar Backscatter at Low Incidence Angles from TRMM Precipitation Radar Measurements

Michael H. Freilich College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Michael H. Freilich in
Current site
Google Scholar
PubMed
Close
and
Barry A. Vanhoff College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Barry A. Vanhoff in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

One year of collocated, rain-free normalized backscatter cross-section measurements from the Tropical Rainfall Mapping Mission (TRMM) precipitation radar (PR) and wind speed estimates from the TRMM Microwave Imager are used to construct fully empirical model functions relating cross section to wind speed for incidence angles from 0° (nadir) to 18°. With the exception of a ∼1.9-dB offset, the TRMM PR model function at nadir compares well with TOPEX and Geosat results. For the first time using spaceborne data, least squares fits of the TRMM PR model functions to the geometric optics scattering formulation allow direct solution for the magnitudes and wind speed dependencies of Ku-band effective nadir reflectivity and effective mean square slope [s(u)]. Effective reflectivity is found to decrease slightly with increasing wind speed above 3.5 m s–1. A logarithmic dependence of s(u) is found for wind speeds between 1 and 10 m s–1. Both linear and two-branch logarithmic dependencies (with a slope break at 10 m s–1) are excellent and statistically indistinguishable parameterizations for s(u) for wind speeds between 5 and 19 m s–1. Calculations using the Elfouhaily et al. wave model suggest that the effective Ku-band s(u) corresponds to a cutoff wavelength of 3 to 6 times the radar wavelength for wind speeds from 5 to 25 m s–1; at lower wind speeds, the cutoff wavelength increases rapidly consistent with earlier observations.

Corresponding author address: Michael H. Freilich, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 Ocean Admin. Building, Corvallis, OR 97331-5503. Email: mhf@coas.oregonstate.edu

Abstract

One year of collocated, rain-free normalized backscatter cross-section measurements from the Tropical Rainfall Mapping Mission (TRMM) precipitation radar (PR) and wind speed estimates from the TRMM Microwave Imager are used to construct fully empirical model functions relating cross section to wind speed for incidence angles from 0° (nadir) to 18°. With the exception of a ∼1.9-dB offset, the TRMM PR model function at nadir compares well with TOPEX and Geosat results. For the first time using spaceborne data, least squares fits of the TRMM PR model functions to the geometric optics scattering formulation allow direct solution for the magnitudes and wind speed dependencies of Ku-band effective nadir reflectivity and effective mean square slope [s(u)]. Effective reflectivity is found to decrease slightly with increasing wind speed above 3.5 m s–1. A logarithmic dependence of s(u) is found for wind speeds between 1 and 10 m s–1. Both linear and two-branch logarithmic dependencies (with a slope break at 10 m s–1) are excellent and statistically indistinguishable parameterizations for s(u) for wind speeds between 5 and 19 m s–1. Calculations using the Elfouhaily et al. wave model suggest that the effective Ku-band s(u) corresponds to a cutoff wavelength of 3 to 6 times the radar wavelength for wind speeds from 5 to 25 m s–1; at lower wind speeds, the cutoff wavelength increases rapidly consistent with earlier observations.

Corresponding author address: Michael H. Freilich, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 Ocean Admin. Building, Corvallis, OR 97331-5503. Email: mhf@coas.oregonstate.edu

Save
  • Apel, J. R., 1994: An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res., 99 , 1626916291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., 1974: Wind dependence of quasi-specular microwave sea scatter. IEEE Trans. Antennas Propag., AP-22 , 135136.

  • Brown, G. S., 1979: Estimation of surface wind speeds using satellite-borne radar measurements at normal incidence. J. Geophys. Res., 84 , 39743978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, G. S., 1990: Quasi-specular scattering from the air–sea interface. Surface Waves and Fluxes, Vol. 2, W. Plant and G. Geerneart, Eds., Kluwer Academic, 1–40.

    • Search Google Scholar
    • Export Citation
  • Caylor, I. J., Heysfield G. M. , Meneghini R. , and Miller L. S. , 1997: Correction of sampling errors in ocean surface cross-sectional estimates from nadir-looking weather radar. J. Atmos. Oceanic Technol., 14 , 203210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., Ries J. C. , Haines B. J. , Fu L-L. , and Callahan P. S. , 2001: Satellite altimetry. Satellite Altimetry and Earth Sciences, L.-L. Fu and A. Cazenave, Eds., Academic Press, 1–131.

    • Search Google Scholar
    • Export Citation
  • Connor, L. N., and Chang P. S. , 2000: Ocean surface wind retrievals using the TRMM microwave imager. IEEE Trans. Geosci. Remote Sens., 38 , 20092016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C. S., and Munk W. , 1954: Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13 , 198227.

  • Donelan, M., and Pierson W. J. , 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92 , 49715029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elfouhaily, T., Chapron B. , Katsaros K. , and Vandemark D. , 1997: A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res., 102 , 1578115796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and Dunbar R. S. , 1993: Derivation of satellite wind model functions using operational surface wind analyses: An altimeter example. J. Geophys. Res., 98 , 1463314649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and Challenor P. G. , 1994: A new approach for determining fully empirical altimeter wind speed model functions. J. Geophys. Res., 99 , 2505125062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grantham, W. L., Bracalante E. M. , Jones W. L. , and Johnson J. W. , 1977: The Seasat—A satellite scatterometer. IEEE J. Oceanic Eng., OE-2 , 200206.

    • Search Google Scholar
    • Export Citation
  • Holliday, D., St.-Cyr G. , and Woods N. E. , 1986: A radar ocean imaging model for small to moderate incidence angles. Int. J. Remote Sens., 7 , 18091834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, F. C., Walton W. T. , and Hines D. E. , 1992: Sea surface mean square slope from Ku-band backscatter data. J. Geophys. Res., 97 , 1141111427.

  • Kozu, T., and Coauthors. 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 39 , 102116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors. 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., Im E. , Durden S. L. , and Haddad Z. S. , 2002: A surface wind model-based method to estimate path-induced radar path attenuation over ocean. J. Atmos. Oceanic Technol., 19 , 658672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mears, C. A., Smith D. K. , and Wentz F. J. , 2001: Comparison of SSM/I and buoy-measured wind speeds from 1987 to 1997. J. Geophys. Res., 106 , 1171911729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., Smith D. , and Wentz F. J. , 2001: A 10 year intercomparison between collocated Special Sensor Microwave Imager oceanic surface wind speed retrievals and global analyses. J. Geophys. Res., 106 , 1173111742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Iguchi T. , Kozu T. , Liao L. , Okamoto K. , Jones J. A. , and Kwiatowski J. , 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39 , 20532070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naderi, F. M., Freilich M. H. , and Long D. G. , 1991: Spaceborne radar measurement of wind velocity over the ocean—An overview of the NSCAT scatterometer system. Proc. IEEE, 79 , 850866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1990: Bragg scattering of electromagnetic waves from the air/sea interface. Surface Waves and Fluxes, Vol. 2, W. Plant and G. Geerneart, Eds., Kluwer Academic, 41–108.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., Weissman D. E. , Keller W. C. , Hessany V. , Hayes K. , and Hoppe K. W. , 1999: Air/sea momentum transfer and the microwave cross section of the sea. J. Geophys. Res., 104 , 1117311191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., Teukolsky S. A. , Vetterling W. T. , and Flannery B. P. , 1996: Numerical Recipes in Fortran 77. Vol. 1. 2d ed. Cambridge University Press, 933 pp.

    • Search Google Scholar
    • Export Citation
  • Schroeder, L. C., Jones W. L. , Schaffner P. R. , and Mitchell J. L. , 1984: Flight measurements and analysis of AAFE RADSCAT wind speed signature of the ocean. NASA Tech. Memo. 85646, 144 pp.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. H., 1985: Methods of Satellite Oceanography. University of California Press, 360 pp.

  • Stoffelen, A., and Anderson D. L. T. , 1997: Scatterometer data interpretation: Derivation of the transfer function CMOD4. J. Geophys. Res., 102 , 57675780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., and Yelland M. J. , 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31 , 572590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. R., 1988: Calculation of radar backscatter modulations from internal waves. J. Geophys. Res., 93 , 1237112380.

  • Valenzuela, G. R., 1978: Theories for the interaction of electromagnetic and oceanic waves—A review. Bound.-Layer Meteor., 13 , 6185.

  • Wentz, F. J., 1997: A well calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res., 102 , 87038718.

  • Wentz, F. J., and Spencer R. W. , 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55 , 16131627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and Smith D. K. , 1999: A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104 , 1149911514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., Peteherych S. , and Thomas L. A. , 1984: A model function for ocean radar cross-sections at 14.6 GHz. J. Geophys. Res., 89 , 36893704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., Ashcroft P. D. , and Gentemann C. L. , 2001: Post-launch calibration of the TMI microwave radiometer. IEEE Trans. Geosci. Remote Sens., 39 , 415422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witter, D. L., and Chelton D. B. , 1991: A GEOSAT wind speed algorithm and a method for altimeter wind speed algorithm development. J. Geophys. Res., 96 , 88538860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1972: Sea-surface slope and equilibrium wind-wave spectra. Phys. Fluids, 15 , 741747.

  • Wu, J., 1990: Mean square slopes of the wind-disturbed water surface, their magnitude, directionality, and composition. Radio Sci., 25 , 3748.

  • Wu, J., 1992: Near-nadir microwave specular returns from the sea surface—Altimeter algorithms for wind and wind stress. J. Atmos. Oceanic Technol., 9 , 659667.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 888 191 26
PDF Downloads 542 107 9