• Ackerman, A. S., , Toon O. B. , , Stevens D. E. , , Heymsfield A. J. , , Ramanathan V. , , and Welton E. J. , 2000: reduction of tropical cloudiness by soot. Science, 288 , 10421047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, K. M., , Davis L. I. Jr., , Japar S. M. , , and Finley D. R. , 1990a: Real-time, in situ measurement of atmospheric optical absorption in the visible via photoacoustic spectroscopy—IV. Visibility degradation and aerosol optical properties in Los Angeles. Atmos. Environ., 24A , 605610.

    • Search Google Scholar
    • Export Citation
  • Adams, K. M., , Davis L. I. Jr., , Japar S. M. , , Finley D. R. , , and Cary R. A. , 1990b: Measurement of atmospheric elemental carbon: Real-time data for Los Angeles during summer 1987. Atmos. Environ., 24A , 597604.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., 2001: The dark side of aerosols. Nature, 409 , 671672.

  • Arnott, W. P., , Moosmüller H. , , Rogers C. F. , , Jin T. , , and Bruch R. , 1999: Photoacoustic spectrometer for measuring light absorption by aerosols: Instrument description. Atmos. Environ., 33 , 28452852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnott, W. P., , Moosmüller H. , , and Walker J. W. , 2000: Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols. Rev. Sci. Instrum., 71 , 45454552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., 1976: Energy absorption by volatile atmospheric aerosol particles. Atmos. Environ., 10 , 241248.

  • Brand, C., , Winkler A. , , Hess P. , , Miklós A. , , Bozóki Z. , , and Sneider J. , 1995: Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: Results for C2H4. Appl. Opt., 34 , 32573266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruce, C. W., , and Pinnick R. G. , 1977: In-situ measurements of aerosol absorption with a resonant cw laser spectrophone. Appl. Opt., 16 , 17621765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, C. H., 1975: Effective absorption for thermal blooming due to aerosols. Appl. Phys. Lett., 26 , 628629.

  • Chughtai, A. R., , Miller N. J. , , Smith D. M. , , and Pitts J. R. , 1999: Carbonaceous particle hydration III. J. Atmos. Chem., 34 , 259279.

  • Faxvog, F. R., , and Roessler D. M. , 1982: Mass concentration of diesel particle emissions from photoacoustic and opacity measurements. Aerosol Sci. Technol., 1 , 225234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, M., , and Hess P. , 1990: High precision study of chemical relaxation in the system N2O4 = 2NO2 by photoacoustic resonance spectroscopy. J. Chem. Phys., 93 , 86938702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiegel, R. P., , Hays P. B. , , and Wright W. M. , 1989: Photoacoustic technique for the measurement of absorption line profiles. Appl. Opt., 28 , 14011408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foot, J. S., 1979: Spectrophone measurements of the absorption of solar radiation by aerosol. Quart. J. Roy. Meteor. Soc., 105 , 275283.

  • Fox, D. G., , Malm W. C. , , Mitchell B. , , and Fisher R. W. , 1999: Where there’s fire, there’s smoke: Fine particulate and regional haze. Environ. Manage., , 1524.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , Sato M. , , Ruedy R. , , Lacis A. , , and Oinas V. , 2000: Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA, 97 , 6.

    • Search Google Scholar
    • Export Citation
  • Harshbarger, W. R., , and Robin M. B. , 1973: The opto-acoustic effect: Revival of an old technique for molecular spectroscopy. Chem. Res., 6 (10) 329334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickey, C. J., , Raspet R. , , and Slaton W. V. , 2000: Effects of thermal diffusion on sound attenuation in evaporating and condensing gas-vapor mixtures in tubes. J. Acoust. Soc. Amer., 107 , 11261130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschfelder, J. V., , Curtiss C. , , and Bird R. B. , 1954: Molecular Theory of Gases and Liquids. Wiley.

  • Horvath, H., 1993: Atmospheric light absorption—A review. Atmos. Environ., 27A , 293317.

  • Horvath, H., , Gorraiz J. , , Habenreich T. , , and Johnson C. , 1983: On the influence of light absorption on visibility: Experimental laboratory study and measurement in Vienna. J. Aerosol Sci., 14 , 357361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409 , 695697.

  • Landau, L. D., , and Lifshitz E. M. , 1997: Fluid Mechanics. 2d ed. Butterworth-Heinemann, 539 pp.

  • Lighty, J. S., , Veranth J. M. , , and Sarofim A. F. , 2000: Combustion aerosols: Factors governing their size and composition and implications to human health. J. Air Waste Manage. Assoc., 50 , 15651618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and Feichter J. , 2001: Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale? Geophys. Res. Lett., 28 , 159161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marble, F. E., 1969: Some gasdynamic problems in the flow of condensing vapors. Astronaut. Acta, 14 , 585614.

  • Miklos, A., , and Hess P. , 2001: Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum., 72 , 19371955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moosmüller, H., , Arnott W. P. , , Rogers C. F. , , Chow J. C. , , Frazier C. A. , , Sherman L. E. , , and Dietrich D. L. , 1998: Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997). J. Geophys. Res., 103 , 2814928157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moosmüller, H., ,and Coauthors. 2001: Time resolved characterization of diesel particulate emissions. 2. Instruments for elemental and organic carbon measurements. Environ. Sci. Technol., 35 , 19351942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morse, P. M., , and Ingard K. U. , 1986: Theoretical Acoustics. Princeton University Press, 927 pp.

  • National Research Council, 1993: Protecting Visibility in National Parks and Wilderness Areas. National Academic Press, 316 pp.

  • Petzold, A., , and Niessner R. , 1992: In situ measurements on carbon aerosols with photoacoustic spectroscopy. SPIE Int. Soc. Opt. Eng. Proc., 1716 , 510516.

    • Search Google Scholar
    • Export Citation
  • Petzold, A., , and Niessner R. , 1995: Novel design of a resonant photoacoustic spectrophone for elemental carbon mass monitoring. Appl. Phys. Lett., 66 , 12851287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, A. D., 1989: Acoustics: An Introduction to its Physical Principles and Applications. Acoustical Society of America.

  • Raspet, R., , Hickey C. J. , , and Sabatier J. M. , 1999: The effect of evaporation–condensation on sound propagation in cylindrical tubes using the low reduced frequency approximation. J. Acoust. Soc. Amer., 105 , 6573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, F., 1965: Fundamentals of Statistical and Thermal Physics. McGraw-Hill.

  • Roessler, D. M., 1984: Photoacoustic insights on diesel exhaust particles. Appl. Opt., 23 , 11481155.

  • Rosencwaig, A., 1980: Photoacoustics and Photoacoustic Spectroscopy. Wiley.

  • Sigrist, M. W., 1994: Air monitoring by laser photoacoustic spectroscopy. Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, Ed., Wiley, 127–186.

    • Search Google Scholar
    • Export Citation
  • Terhune, R. W., , and Anderson J. E. , 1977: Spectrophone measurements of the absorption of visible light by aerosols in the atmosphere. Opt. Lett., 1 (2) 7072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Truex, T. J., , and Anderson J. E. , 1979: Mass monitoring of carbonaceous aerosol with a spectrophone. Atmos. Environ., 13 , 507509.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 149 149 16
PDF Downloads 43 43 20

Evaporation–Condensation Effects on Resonant Photoacoustics of Volatile Aerosols

View More View Less
  • 1 National Center for Physical Acoustics, University of Mississippi, University, Mississippi
  • | 2 Desert Research Institute, University of Nevada at Reno, Reno, Nevada
© Get Permissions
Restricted access

Abstract

In determining the optical properties of the atmosphere, the measurement of light absorption by aerosols is particularly challenging, and yet it is important because of the influence of strongly absorbing black carbon on climate and atmospheric visibility. The photoacoustic method obtains aerosol light absorption in situ, without use of filters, by acoustic measurement of the heat generated from aerosol light absorption, and its transfer to the surrounding air. However, in the general case, volatile aerosols heated by light absorption may also cool by evaporation (mass transfer). In this paper, the limiting case of the photoacoustic response of a volatile aerosol is compared with that of a dry aerosol to further the understanding of the data obtained with photoacoustic instruments. While the theory of photoacoustics of volatile aerosols for low-frequency, nonresonant cells has already been developed, current methods employ high-frequency, acoustically resonant photoacoustic instruments for quantifying atmospheric aerosol light absorption and vehicle exhaust mass concentration associated with black carbon. In this paper, a complete theory of photoacoustics for volatile aerosols is developed that includes additional terms to allow for higher-frequency devices, large particles, and high particle densities. Numerical calculations are used to determine the limits of various approximations.

Corresponding author address: Dr. W. Patrick Arnott, Desert Research Institute, University of Nevada at Reno, 2215 Raggio Parkway, Reno, NV 89512. Email: pat@dri.edu

Abstract

In determining the optical properties of the atmosphere, the measurement of light absorption by aerosols is particularly challenging, and yet it is important because of the influence of strongly absorbing black carbon on climate and atmospheric visibility. The photoacoustic method obtains aerosol light absorption in situ, without use of filters, by acoustic measurement of the heat generated from aerosol light absorption, and its transfer to the surrounding air. However, in the general case, volatile aerosols heated by light absorption may also cool by evaporation (mass transfer). In this paper, the limiting case of the photoacoustic response of a volatile aerosol is compared with that of a dry aerosol to further the understanding of the data obtained with photoacoustic instruments. While the theory of photoacoustics of volatile aerosols for low-frequency, nonresonant cells has already been developed, current methods employ high-frequency, acoustically resonant photoacoustic instruments for quantifying atmospheric aerosol light absorption and vehicle exhaust mass concentration associated with black carbon. In this paper, a complete theory of photoacoustics for volatile aerosols is developed that includes additional terms to allow for higher-frequency devices, large particles, and high particle densities. Numerical calculations are used to determine the limits of various approximations.

Corresponding author address: Dr. W. Patrick Arnott, Desert Research Institute, University of Nevada at Reno, 2215 Raggio Parkway, Reno, NV 89512. Email: pat@dri.edu

Save