• Alvarez, A., , Lopez C. , , Riera M. , , Hernandez-Garcia E. , , and Tintore J. , 2000a: Forecasting the SST space–time variability of the Alboran Sea with genetic algorithms. Geophys. Res. Lett., 27 , 27092712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvarez, A., , Orfila A. , , and Sellschopp J. , 2000b: A satellite based ocean forecasting system to support naval operations in crisis situations. SACLANTCEN SM-375, Italy.

    • Search Google Scholar
    • Export Citation
  • Alvarez, A., , Orfila A. , , and Tintore J. , 2001: DARWIN—An evolutionary program for nonlinear modeling of chaotic time series. Comput. Phys. Commun., 136 , 334349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvarez, A., , Orfila A. , , and Sellschopp J. , 2003: Satellite based forecasting of sea surface temperature in the Tuscan Archipelago. Int. J. Remote Sens., in press.

    • Search Google Scholar
    • Export Citation
  • Artegiani, A., , Bregant D. , , Paschini E. , , Pinardi N. , , Raicich F. , , and Russo A. , 1997: The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr., 27 , 15151532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., ,and Coauthors. 1994: Long-lead seasonal forecasts—Where do we stand? Bull. Amer. Meteor. Soc., 75 , 20972114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borcelli, G., , and Ligi R. , 1999: Empirical orthogonal function analysis of SST image series: A physical interpretation. J. Atmos. Oceanic Technol., 16 , 776781.

    • Search Google Scholar
    • Export Citation
  • Broomhead, D. S., , and Lowe D. , 1987: Extracting qualitative dynamics from experimental data. Physica D, 20 , 217224.

  • Casdagli, M., , des Jardins D. , , Eubank S. , , Farmer J. D. , , Gibson J. , , Theiler J. , , and Hunter N. , 1992: Nonlinear modeling of chaotic time series: Theory and applications. Appl. Chaos, J. H. Kim and J. Stringer, Eds., Wiley, 335–379.

    • Search Google Scholar
    • Export Citation
  • Cobb, H. G., , and Grefenstette J. J. , 1993: Genetic algorithms for tracking changing environments. Proceedings of the 5th International Conference on Genetic Algorithms, S. Forrest, Ed., Morgan Kaufmann, 523–530.

    • Search Google Scholar
    • Export Citation
  • Cole, J., , and Villacastin C. , 2000: Sea surface temperature variability in the northern Benguela upwelling system, and implications for fisheries research. Int. J. Remote Sens., 21 , 643655.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., , and Tsonis A. A. , 1996: Singular Spectrum Analysis: A New Tool in Time Series Analysis. Plenum Press, 164 pp.

  • Gačić, M., , Marullo S. , , Santoreli R. , , and Bergamasco A. , 1997: Analysis of the seasonal and interannual variability of the sea surface temperature field in the Adriatic Sea from AVHRR data (1984–1992). J. Geophys. Res., 102 , 2293722946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Gorriz, E., , and Vazquez-Cuervo J. , 1999: Ocean–atmosphere coupling in the Mediterranean Sea from TOPEX/POSEIDON, ERS1 and AVHRR data. Int. J. Remote Sens., 20 , 21272147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golub, G. H., , and van Loan C. F. , 1989: Matrix Computations. The John Hopkins University Press, 642 pp.

  • Grassberger, P., , and Procaccia I. , 1983: Measuring the strangeness of strange attractors. Physica D, 9 , 189208.

  • Kelly, K. A., 1985: The influence of winds and topography on the sea surface temperature patterns over the northern California slope. J. Geophys. Res., 90 , 1178311798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., 1988: Comment on “Empirical orthogonal function analysis of advance very high resolution radiometer surface temperature patterns in Santa Barbara channel.”. J. Geophys. Res., 93 , 1575315754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konyaev, K. V., 1990: Spectral Analysis of Physical Oceanographic Data. A. A. Balkema, 200 pp.

  • Lagerloef, G. S. E., , and Bernstein R. L. , 1988: Empirical orthogonal function analysis of advance very high resolution radiometer surface temperature patterns in Santa Barbara channel. J. Geophys. Res., 93 , 68636873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., 1997: Error subspace data assimilation methods for ocean field estimation: Theory, validation and applications. Ph.D. thesis, Harvard University, 402 pp.

    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., , and Robinson A. R. , 1999: Data assimilation via error subspace statistical estimation. Part I: Theory and schemes. Mon. Weather Rev., 127 , 13851407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, C., , Alvarez A. , , and Hernandez-Garcia E. , 2000: Forecasting confined spatiotemporal chaos with genetic algorithms. Phys. Rev. Lett., 85 , 23002303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magdon-Ismail, M., , Nicholson A. , , and Abu-Mostafa Y. S. , 1998: Financial markets: Very noisy information processing. Proc. IEEE, 86 , 21842195.

  • Michalewicz, Z., 1996: Genetic Algorithms + Data Structures = Evolutionary Programs. Springer-Verlag, 387 pp.

  • Orlič, M., , Gačić M. , , and La Violette P. E. , 1992: The currents and circulation of the Adriatic Sea. Oceanol. Acta, 15 , 109124.

  • Paden, C., , Abbott M. R. , , and Winant C. D. , 1991: Tidal and atmospheric forcing of the upper ocean in the Gulf of California. 1: Sea surface temperature variability. J. Geophys. Res., 96 , 1833718359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendland, C., , Ghil G. , , and Weickmann K. M. , 1991: Adaptive filtering and maximum entrophy spectrum with application to changes in atmospheric angular momentum. J. Geophys. Res., 96 , 2265922671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Rixen, M., , Beckers J. M. , , Alvarez A. , , and Tintore J. , 2001: Some results on SSH neural network forecasting in the Mediterranean Sea. Proceedings of the 8th International Symposium on Remote Sensing of the Ocean and Sea Ice, SPIE, 24–33.

    • Search Google Scholar
    • Export Citation
  • Sauer, T., 1993: Time series prediction by using delay coordinate embedding. Time Series Prediction: Forecasting the Future and Understanding the Past, A. S. Weigend and N. A. Gershenfeld, Eds., SFI Studies in the Sciences of Complexity, Proc., Vol XV, Addison-Wesley, 175–193.

    • Search Google Scholar
    • Export Citation
  • Scott, J. C., 1997: Satellite remote sensing in rapid environmental assessment; the optimum use of available data. Rapid Environmental Assessment, E. Pouliquen et al., Eds., NATO-SACLANTCEN, 65–72.

    • Search Google Scholar
    • Export Citation
  • Szpiro, G. G., 1997: Forecasting chaotic time series with genetic algorithms. Phys. Rev. E, 55 , 25572568.

  • Takens, F., 1981: Detecting strange attractors in fluid turbulence. Dynamical Systems and Turbulence, D. Rand and L. S. Young, Eds., Lecture Notes in Mathematics, Vol. 898, Springer-Verlag, 366–369.

    • Search Google Scholar
    • Export Citation
  • Tang, B., 1995: Periods of linear development of the ENSO cycle and POP forecast experiment. J. Climate, 8 , 582691.

  • Tsonis, A. A., , and Elesner J. B. , 1992: Nonlinear prediction as a way of distinguishing chaos from random fractal sequences. Nature, 358 , 217220.

  • Vazquez-Cuervo, J., , Font J. , , and Martinez-Benjamin J. J. , 1996: Observations on the circulation in the Alboran Sea using ERS1 altimetry and sea surface temperature data. J. Phys. Oceanogr., 26 , 14261439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 456 pp.

  • Yadavalli, V. K., , Dahule R. K. , , Sanjeev S. T. , , and Kulkarni B. D. , 1999: Obtaining functional form for chaotic time series evolution using genetic algorithm. Chaos, 9 , 789794.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 109 2
PDF Downloads 5 5 2

Performance of Satellite-Based Ocean Forecasting (SOFT) Systems: A Study in the Adriatic Sea

View More View Less
  • 1 North Atlantic Treaty Organization, SACLANT Undersea Research Centre, La Spezia, Italy
© Get Permissions
Restricted access

Abstract

Continuous monitoring by satellites of the ocean spatiotemporal variability allows empirical forecasting of satellite-observed data. The forecast of satellite data is achieved in three major phases: decomposition of the spatiotemporal variability of the satellite data, noise reduction of the encoded space, and time variability and the prediction, by a nonlinear forecasting technique, of the time variability. Different techniques can be employed in each processing phase. Specifically, decomposition can be carried out using spatial or temporal variance EOF decomposition. With spatial variance EOFs, performance of the empirical forecasting is associated with the predictability of the dynamics of spatial structures with strong spatial gradients (fronts, eddies, etc. . . .). Conversely, if temporal variance decomposition is employed, the success of the empirical prediction system will be related to features with strong temporal variability. Both approaches have been employed to empirically forecast satellite-observed data in different ocean areas. This article attempts to determine which is the superior method (in terms of predictability). Two satellite-based ocean forecasting systems using temporal and spatial variance decomposition, respectively, were developed to forecast the monthly mean of the sea surface temperature (SST) of the Adriatic Sea. Results indicate that, although the empirical dynamical models were different, both approaches provide similar forecasts. Slight differences in the forecast skill of both systems are found in spring and summer showing with better performance from the covariance SOFT system.

Corresponding author address: Dr. Alberto Alvarez, Instituto Mediterraneo, de Estudios Avanzados, C/Miquel Marques, 21, Esporlas, Mallorca 07190, Spain. Email: vieaaad@uib.es

Abstract

Continuous monitoring by satellites of the ocean spatiotemporal variability allows empirical forecasting of satellite-observed data. The forecast of satellite data is achieved in three major phases: decomposition of the spatiotemporal variability of the satellite data, noise reduction of the encoded space, and time variability and the prediction, by a nonlinear forecasting technique, of the time variability. Different techniques can be employed in each processing phase. Specifically, decomposition can be carried out using spatial or temporal variance EOF decomposition. With spatial variance EOFs, performance of the empirical forecasting is associated with the predictability of the dynamics of spatial structures with strong spatial gradients (fronts, eddies, etc. . . .). Conversely, if temporal variance decomposition is employed, the success of the empirical prediction system will be related to features with strong temporal variability. Both approaches have been employed to empirically forecast satellite-observed data in different ocean areas. This article attempts to determine which is the superior method (in terms of predictability). Two satellite-based ocean forecasting systems using temporal and spatial variance decomposition, respectively, were developed to forecast the monthly mean of the sea surface temperature (SST) of the Adriatic Sea. Results indicate that, although the empirical dynamical models were different, both approaches provide similar forecasts. Slight differences in the forecast skill of both systems are found in spring and summer showing with better performance from the covariance SOFT system.

Corresponding author address: Dr. Alberto Alvarez, Instituto Mediterraneo, de Estudios Avanzados, C/Miquel Marques, 21, Esporlas, Mallorca 07190, Spain. Email: vieaaad@uib.es

Save