• Cox, C., , and Munk W. , 1954: Measurement of the roughness of the sea surface from photographs of the sun glitter. J. Opt. Soc. Amer., 44 , 838850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dave, J. V., 1973: Development of the programs for computing characteristics of ultraviolet radiation: Scalar case. Tech. Rep. NASS-21680, NASA GSFC, Greenbelt, MD, 130 pp.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., , and King M. , 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J. Geophys. Res., 105 , 2067320696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geogdzhaeyev, I., , Mischenko M. , , Rossow W. , , Cairns B. , , and Lacis A. , 2002: Global two-channel AVHRR retrievals of aerosol properties over ocean for the period of NOAA-9 and preliminary retrievals using NOAA-7 and NOAA-11 data. J. Atmos. Sci., 59 , 262278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrum, G., , Kidwell K. , , and Winston W. , Eds.,. 2003: NOAA-KLM user's guide. NOAA/NESDIS, 1106 pp. [Available from National Climatic Data Center, 151 Patton Ave., Asheville, NC 28801-5001; also available online at http://www2.ncdc.noaa.gov/docs/klm/index.htm.].

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., , Cao C. , , and Sullivan J. , 2002: Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate Advanced Very High Resolution Radiometer reflectance channels. J. Geophys. Res.,107, 4702, doi:10.1029/2001JD002035.

    • Search Google Scholar
    • Export Citation
  • Higurashi, A., , and Nakajima T. , 1999: Development of a two-channel aerosol retrieval algorithm on a global scale using NOAA/AVHRR. J. Atmos. Sci., 56 , 924941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Husar, R., , Prospero J. , , and Stowe L. , 1997: Characterization of tropospheric aerosols over oceans with the NOAA AVHRR optical thickness operational product. J. Geophys. Res., 102 , 1688916909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., 2002: Sensitivity and information content of aerosol retrievals from AVHRR: Radiometric factors. Appl. Opt., 41 , 9911011.

  • Ignatov, A., , and Stowe L. , 2000: Physical basis, premises, and self-consistency checks of aerosol retrievals from TRMM VIRS. J. Appl. Meteor., 39 , 22592277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., , and Nalli N. , 2002: Aerosol retrievals from multiyear multisatellite AVHRR Pathfinder Atmosphere (PATMOS) dataset for correcting remotely sensed sea surface temperatures. J. Atmos. Oceanic Technol., 19 , 19862008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., , and Stowe L. , 2002a: Aerosol retrievals from individual AVHRR channels. Part I: Retrieval algorithm, and transition from Dave to 6S radiative transfer model. J. Atmos. Sci., 59 , 313334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., , and Stowe L. , 2002b: Aerosol retrievals from individual AVHRR channels. Part II: Quality control, probability distribution functions, and consistency checks of retrievals. J. Atmos. Sci., 59 , 335362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., , Stowe L. , , Sakerin S. , , and Korotaev G. , 1995: Validation of the NOAA/NESDIS satellite aerosol product over the North Atlantic in 1989. J. Geophys. Res., 100 , 51235132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., , Stowe L. , , and Singh R. , 1998: Sensitivity study of the Ångström exponent derived from AVHRR over oceans. Adv. Space Res., 21 , 439442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, Y., , Holben B. , , Tanre D. , , Slutsker I. , , Smirnov A. , , and Eck T. , 2000: Will aerosol measurements from Terra and Aqua polar orbiting satellites represent the daily aerosol abundance and properties? Geophys. Res. Lett., 27 , 38613864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidwell, K., , Ed. 1998: NOAA polar orbiter data user's guide (TIROS-N, NOAA-6, -7, -8, -9, -10, -11, -12, -13, and -14). NOAA/National Environmental Satellite, Data, and Information Service, 412 pp. [Available from National Climatic Data Center, 151 Patton Ave., Asheville, NC 28801-5001; also available online at http://www2.ncdc.noaa.gov/docs/podug/index.htm.].

    • Search Google Scholar
    • Export Citation
  • King, M., , Kaufman Y. , , Tanre D. , , and Nakajima T. , 1999: Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Amer. Meteor. Soc., 80 , 22292259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClain, P., 1989: Global SST and cloud clearing for aerosol optical depth estimates. Int. J. Remote Sens., 10 , 763769.

  • McClain, P., , Pichel W. , , and Walton C. , 1985: Comparative performance of AVHRR-based multi-channel sea surface temperatures. J. Geophys. Res., 90 , 1158711601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M., , Geogdzhayev I. , , Cairns B. , , Rossow W. , , and Lacis A. , 1999: Aerosol retrievals over the oceans by use of channels 1 and 2 AVHRR data: Sensitivity analysis and preliminary results. Appl. Opt., 38 , 73257341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2004: Intercomparison of satellite retrieved aerosol optical depth over the ocean. J. Atmos. Sci., in press.

  • Nalli, N., , and Stowe L. , 2002: Aerosol correction for remotely sensed sea surface temperature from the NOAA AVHRR. J. Geophys. Res.,107, 3172, doi:10.1029/2001JC00162.

    • Search Google Scholar
    • Export Citation
  • O'Neill, N., , Ignatov A. , , Holben B. , , and Eck T. , 2000: The log-normal distribution as a reference for reporting aerosol optical depth statistics: Empirical tests using multi-year, multi-site AERONET sun photometer data. Geophys. Res. Lett., 27 , 33333336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, N., , and Chen J. , 1996: Post-launch calibration of the visible and near-IR channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft. Int. J. Remote Sens., 17 , 27432747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, N., , and Chen J. , 1999: Revised post-launch calibration of the visible and near-IR channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft. Int. J. Remote Sens., 20 , 34853491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, N., , Stowe L. , , and McClain P. , 1989: Remote sensing of aerosols over oceans using AVHRR data: Theory, practice and applications. Int. J. Remote Sens., 10 , 743749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, P. K., , Holmes S. J. , , Anderson R. K. , , Winston J. S. , , and Lehr P. E. , Eds.,. . 1990: Weather Satellites: Systems, Data and Environmental Applications. Amer. Meteor. Soc., 503 pp.

    • Search Google Scholar
    • Export Citation
  • Remer, L., and Coauthors, 2002: Validation of MODIS aerosol retrieval over ocean. Geophys. Res. Lett.,29, 8008, doi:10.1029/2001GL013204.

    • Search Google Scholar
    • Export Citation
  • Rogers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys., 14 , 609624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W., , and Shiffer R. , 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, A., , Holben B. , , Kaufman Y. , , Dubovik O. , , Eck T. , , Slutsker I. , , Pietras C. , , and Halthore R. , 2002: Optical properties of atmospheric aerosol in maritime environments. J. Atmos. Sci., 59 , 501523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowe, L., , Ignatov A. , , and Singh R. , 1997: Development, validation and potential enhancements to the second generation operational aerosol product at NOAA/NESDIS. J. Geophys. Res., 102 , 1692316934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowe, L., , Jacobowitz H. , , Ohring G. , , Knapp K. , , and Nalli N. , 2002: The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) climate dataset: Initial analyses and evaluations. J. Climate, 15 , 12431260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., , Charlock T. , , and Rutlege K. , 2002: Observations of reflectance distribution around sunglint from a coastal oceanic platform. Appl. Opt., 41 , 73697383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tahnk, W., , and Coakley J. , 2001a: Improved calibration coefficients for NOAA-14 AVHRR visible and near-IR channels. Int. J. Remote Sens., 22 , 12691283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tahnk, W., , and Coakley J. , 2001b: Updated calibration coefficients for NOAA-14 AVHRR channels 1 and 2. Int. J. Remote Sens., 22 , 30533057.

  • Tanre, D., , Herman M. , , and Kaufman Y. , 1996: Information on aerosol size distribution contained in solar reflected spectral radiances. J. Geophys. Res., 101 , 1904319060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanre, D., , Kaufman Y. , , Herman M. , , and Mattoo S. , 1997: Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res., 102 , 1697116989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vermote, E., , Tanre D. , , Deuze J. L. , , Herman M. , , and Morcrette J. J. , 1997: Second Simulation of the Satellite Signal in the Solar Spectrum, ‘6S': An overview. IEEE Trans. Geosci. Remote Sens., 35 , 675686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagener, R., , Nemesure S. , , and Schwartz S. , 1997: Aerosol optical depth over oceans: High space- and time-resolution retrieval and error budget from satellite radiometry. J. Atmos. Oceanic Technol., 14 , 577590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, C., , Pichel W. , , Sapper J. , , and May D. , 1998: The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar orbiting environmental satellites. J. Geophys. Res., 103 , 2799928012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinreb, M., , Jamieson M. , , Fulton N. , , Chen Y. , , Johnson J. , , Bremer J. , , Smith C. , , and Baucom J. , 1997: Operational calibration of GOES-8 and -9 imagers and sounders. Appl. Opt., 27 , 68956904.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 173 8
PDF Downloads 30 30 1

Operational Aerosol Observations (AEROBS) from AVHRR/3 On Board NOAA-KLM Satellites

View More View Less
  • 1 NOAA/NESDIS/Office of Research and Applications, Camp Springs, Maryland
  • | 2 NOAA/NESDIS/Office of Satellite Data Processing and Distribution, Suitland, Maryland
  • | 3 Science and Technology Corporation, and NOAA/NESDIS/Environmental Product Systems, Suitland, Maryland
  • | 4 NOAA/NESDIS/Office of Research and Applications, Camp Springs, Maryland
  • | 5 NOAA/NESDIS/Office of Satellite Data Processing and Distribution, Suitland, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Since 1988, the National Oceanic and Atmospheric Administration (NOAA) has provided operational aerosol observations (AEROBS) from the Advanced Very High Resolution Radiometer (AVHRR/2) on board the afternoon NOAA satellites [nominal equator crossing time, (EXT) ∼1330]. Aerosol optical depth (AOD) has been retrieved over oceans from channel 1 of AVHRR/2 on board NOAA-11 (1988–94) and -14 (1995–2000) using the first- and second-generation algorithms, respectively. With the launch of the NOAA-KLM series of satellites, in particular NOAA-16 (L) in September 2000 (EXT ∼1400), and NOAA-17 (M) in June 2002 (EXT ∼1000), an extended and improved third-generation algorithm was enabled. Like its predecessors, this algorithm continues to employ a single-channel methodology, by which all parameters in the retrieval algorithm (excluding AOD) are set globally as nonvariables. But now, in addition to AOD from channel 1, τ1 (λ1 = 0.63 μm), the algorithm also retrieves τ2 and τ3 in AVHRR/3 channels 2 (λ2 = 0.83 μm) and 3A (λ3 = 1.61 μm). The retrievals are made with more accurate and flexible, satellite- and channel-specific lookup tables generated with the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer code. From pairs of τi and τj, the Ångstrom exponent (AE) parameters can then be determined as αij = −ln(τi/τj)/ln(λi/λj).

This paper describes the AEROBS processing and gives examples of aerosol products, along with a preliminary diagnostics of their quality using some of the previously developed self-consistency checks. Interconsistency between the NOAA-16 and -17 aerosol retrievals is also checked. The AODs are largely coherent but distorted by the AVHRR calibration uncertainties, and subject to noise and outliers. These τ errors, unavoidable in real-time AVHRR processing, severely impact the derived AE, demonstrating a fundamental instability in estimating the aerosol model under typical maritime conditions from AVHRR. Consequently, it is concluded that the robust single-channel retrievals should be continued in the AEROBS operations in the KLM era. The more sophisticated multichannel techniques may be tested while reprocessing historical AVHRR data, only after the data quality issues have been resolved (viz., calibration uncertainties constrained, outliers removed, and noise suppressed by spatial averaging).

CIRA Visiting Scientist

Corresponding author address: Dr. Alex Ignatov, E/RA1, NOAA, WWBG, Rm. 7113, 5200 Auth Rd., Camp Springs, MD 20746-4304. Email: Alex.Ignatov@noaa.gov

Abstract

Since 1988, the National Oceanic and Atmospheric Administration (NOAA) has provided operational aerosol observations (AEROBS) from the Advanced Very High Resolution Radiometer (AVHRR/2) on board the afternoon NOAA satellites [nominal equator crossing time, (EXT) ∼1330]. Aerosol optical depth (AOD) has been retrieved over oceans from channel 1 of AVHRR/2 on board NOAA-11 (1988–94) and -14 (1995–2000) using the first- and second-generation algorithms, respectively. With the launch of the NOAA-KLM series of satellites, in particular NOAA-16 (L) in September 2000 (EXT ∼1400), and NOAA-17 (M) in June 2002 (EXT ∼1000), an extended and improved third-generation algorithm was enabled. Like its predecessors, this algorithm continues to employ a single-channel methodology, by which all parameters in the retrieval algorithm (excluding AOD) are set globally as nonvariables. But now, in addition to AOD from channel 1, τ1 (λ1 = 0.63 μm), the algorithm also retrieves τ2 and τ3 in AVHRR/3 channels 2 (λ2 = 0.83 μm) and 3A (λ3 = 1.61 μm). The retrievals are made with more accurate and flexible, satellite- and channel-specific lookup tables generated with the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer code. From pairs of τi and τj, the Ångstrom exponent (AE) parameters can then be determined as αij = −ln(τi/τj)/ln(λi/λj).

This paper describes the AEROBS processing and gives examples of aerosol products, along with a preliminary diagnostics of their quality using some of the previously developed self-consistency checks. Interconsistency between the NOAA-16 and -17 aerosol retrievals is also checked. The AODs are largely coherent but distorted by the AVHRR calibration uncertainties, and subject to noise and outliers. These τ errors, unavoidable in real-time AVHRR processing, severely impact the derived AE, demonstrating a fundamental instability in estimating the aerosol model under typical maritime conditions from AVHRR. Consequently, it is concluded that the robust single-channel retrievals should be continued in the AEROBS operations in the KLM era. The more sophisticated multichannel techniques may be tested while reprocessing historical AVHRR data, only after the data quality issues have been resolved (viz., calibration uncertainties constrained, outliers removed, and noise suppressed by spatial averaging).

CIRA Visiting Scientist

Corresponding author address: Dr. Alex Ignatov, E/RA1, NOAA, WWBG, Rm. 7113, 5200 Auth Rd., Camp Springs, MD 20746-4304. Email: Alex.Ignatov@noaa.gov

Save