• Atlas, D. R., , Srivastava R. C. , , and Sekhon R. S. , 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11 , 135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babb, D. M., , Verlinde J. , , and Albrecht B. A. , 1999: Retrieval of cloud microphysical parameters from 94-GHz radar Doppler power spectra. J. Atmos. Oceanic Technol., 16 , 489503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BoM, 2000: Monthly weather review of South Australia, February 2000. Bureau of Meteorology, 28 pp.

  • Briggs, B. H., 1984: The analysis of spaced sensor records by correlation techniques. Handbook for the Middle Atmospheric Program, R. A. Vincent, Ed., Vol. 13, SCOSTEP Secretariat, University of Illinois, 166–186.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., , Williams C. R. , , Rajopadhyaya D. K. , , Avery S. K. , , Gage K. S. , , and May P. T. , 2000: Drop-size distribution characteristics in tropical mesoscale convective systems. J. Appl. Meteor., 39 , 760777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Currier, P. E., , Avery S. K. , , Balsley B. B. , , Gage K. S. , , and Ecklund W. L. , 1992: Combined use of 50 MHz and 915 MHz wind profilers in the estimation of raindrop size distributions. Geophys. Res. Lett., 19 , 10171020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foote, G. B., , and duToit P. S. , 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8 , 249253.

  • Gossard, E. E., 1988: Measuring drop size distributions in clouds with a clear-air sensing Doppler radar. J. Atmos. Oceanic Technol., 5 , 640649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., , and Sekhon R. S. , 1974: Objective determination of the noise level in Doppler spectra. J. Appl. Meteor., 13 , 808811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., , and Srivastava R. C. , 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52 , 17611783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., , Albrecht B. A. , , and Marks F. Jr., 2002: Why Mie? Accurate observations of vertical air velocities and raindrops using a cloud radar. Bull. Amer. Meteor. Soc., 83 , 14711483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maguire W. B. II, , , and Avery S. K. , 1994: Retrieval of raindrop size distribution using two Doppler wind profilers: Model sensitivity testing. J. Appl. Meteor., 33 , 16231635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., , and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • May, P. T., , and Rajopadhyaya D. K. , 1996: Wind profiler observations of vertical motion and precipitation microphysics of a tropical squall line. Mon. Wea. Rev., 124 , 621633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., , Lucas C. , , Lataitis R. , , and Reid I. M. , 2003: On the use of 50-MHz RASS in thunderstorms. J. Atmos. Oceanic Technol., 20 , 936943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., 1997: Doppler radar spectral broadening due to beam width and wind shear. Ann. Geophys., 15 , 786796.

  • Press, W. H., , Teukolsky S. A. , , Vetterling W. T. , , and Flannery B. P. , 1992: Numerical Recipes in C: The Art of Scientific Computing. 2d ed. Cambridge University Press, 994 pp.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., , May P. T. , , and Vincent R. A. , 1993: A general approach to the retrieval of raindrop size distributions from wind profiler Doppler spectra: Modeling results. J. Atmos. Oceanic Technol., 10 , 710717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., , May P. T. , , Cifelli R. C. , , Avery S. K. , , Williams C. R. , , Ecklund W. L. , , and Gage K. S. , 1998: The effect of vertical air motions on rain rates and median volume diameter determined from combined UHF and VHF wind profiler measurements and comparisons with rain gauge measurements. J. Atmos. Oceanic Technol., 15 , 13061319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., , Avery S. K. , , May P. T. , , and Cifelli R. C. , 1999: Comparison of precipitation estimation using single- and dual-frequency wind profilers: Simulations and experimental results. J. Atmos. Oceanic Technol., 16 , 165173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., , Baumgardner D. , , Ethier S. A. , , Carter D. A. , , and Ecklund W. L. , 1993: Comparison of raindrop size distributions measured by radar wind profiler and by airplane. J. Appl. Meteor., 32 , 694699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., , and Lacaux J-P. , 1995: The shape of averaged drop size distributions. J. Atmos. Sci., 52 , 10701083.

  • Sauvageot, H., , and Koffi M. , 2000: Multimodal raindrop size distributions. J. Atmos. Sci., 57 , 24802492.

  • Schafer, R., , Avery S. , , May P. , , Rajopadhyaya D. , , and Williams C. , 2002: Estimation of rainfall drop size distributions from dual-frequency wind profiler spectra using deconvolution and a nonlinear least squares fitting technique. J. Atmos. Oceanic Technol., 19 , 864874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., , Dullaway S. , , MacKinnon A. I., , Reid M. , , Zink F. , , May P. T. , , and Johnson B. H. , 1998: A VHF boundary layer radar: First results. Radio Sci., 33 , 845860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., , Mizutani A. , , Matsuo M. , , Fukao S. , , and Kato S. , 1986: A direct method for deriving drop size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 3 , 623629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., , Mizutani A. , , Matsuo M. , , Fukao S. , , and Kato S. , 1987: Further discussion on deriving drop-size distribution and vertical air velocities directly from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 4 , 170179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2002: Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations. Radio Sci.,37, 1024, doi:10.1029/2000RS002603.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 138 3
PDF Downloads 22 22 2

Raindrop Size Distribution Retrievals from a VHF Boundary Layer Profiler

View More View Less
  • 1 Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, South Australia, Australia
  • | 2 Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The retrieval of raindrop size distributions (DSDs) in precipitation using boundary layer wind profiler operating at VHF is described. To make the retrievals, a Fourier transform–based deconvolution technique, optimized to run with little human input, is used. The sensitivities of the technique and its overall accuracy are investigated using simulated spectra. The retrievals have an error that depends on the drop diameter, with relative errors varying between ∼10% and 35%. An overall average negative bias of about ∼20% is also found. The magnitude and direction of this bias depend on the spectral width of the input spectrum.

The radar and methodology are applied to a case study of a convective cell. Retrievals are made with ∼300 m resolution between 800 and 4600 m. The temporal resolution is 2 min. Comparisons with a rain gauge show that both the magnitude and timing of the precipitation are well captured by the radar. The relationship between the observed rain rate and exponential fits applied to the DSDs agrees very well with previously published studies. A careful analysis of the characteristics of the DSDs within the descending rainshafts provides direct observations of drop size sorting within the precipitation and the formation of hybrid DSDs formed by the overlapping of consecutive rainshafts.

This study highlights the potential of the boundary layer profiler in precipitation studies. Some drawbacks exist, such as the wide beam of the radar, which increases the spectral width of the radar and limits its use in windy conditions. However, when observations are available, they appear to be of high quality and fill a gap in observations unavailable to more conventional wind profilers. In the future, it is hoped that refinements in the technique will allow the temporal resolution of the radar to be increased and the quality of the retrievals to be improved.

Corresponding author address: Dr. Christopher Lucas, Dept. of Physics and Mathematical Physics, University of Adelaide, Adelaide, South Australia 5005, Australia. Email: christopher.lucas@adelaide.edu.au

Abstract

The retrieval of raindrop size distributions (DSDs) in precipitation using boundary layer wind profiler operating at VHF is described. To make the retrievals, a Fourier transform–based deconvolution technique, optimized to run with little human input, is used. The sensitivities of the technique and its overall accuracy are investigated using simulated spectra. The retrievals have an error that depends on the drop diameter, with relative errors varying between ∼10% and 35%. An overall average negative bias of about ∼20% is also found. The magnitude and direction of this bias depend on the spectral width of the input spectrum.

The radar and methodology are applied to a case study of a convective cell. Retrievals are made with ∼300 m resolution between 800 and 4600 m. The temporal resolution is 2 min. Comparisons with a rain gauge show that both the magnitude and timing of the precipitation are well captured by the radar. The relationship between the observed rain rate and exponential fits applied to the DSDs agrees very well with previously published studies. A careful analysis of the characteristics of the DSDs within the descending rainshafts provides direct observations of drop size sorting within the precipitation and the formation of hybrid DSDs formed by the overlapping of consecutive rainshafts.

This study highlights the potential of the boundary layer profiler in precipitation studies. Some drawbacks exist, such as the wide beam of the radar, which increases the spectral width of the radar and limits its use in windy conditions. However, when observations are available, they appear to be of high quality and fill a gap in observations unavailable to more conventional wind profilers. In the future, it is hoped that refinements in the technique will allow the temporal resolution of the radar to be increased and the quality of the retrievals to be improved.

Corresponding author address: Dr. Christopher Lucas, Dept. of Physics and Mathematical Physics, University of Adelaide, Adelaide, South Australia 5005, Australia. Email: christopher.lucas@adelaide.edu.au

Save