Temperature Microstructure beneath Surface Gravity Waves

Craig L. Stevens National Institute of Water and Atmospheric Research, Greta Point, Wellington, New Zealand

Search for other papers by Craig L. Stevens in
Current site
Google Scholar
PubMed
Close
and
Murray J. Smith National Institute of Water and Atmospheric Research, Greta Point, Wellington, New Zealand

Search for other papers by Murray J. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Oceanic turbulence very near the water surface controls heat, momentum, energy, and mass transfer at the air–sea interface. This study examines the use of a rising temperature microstructure profiler for determination of the rate of turbulent energy dissipation ε beneath a water surface dominated by wind-driven surface gravity waves. Under short-fetch wind waves there is sufficient turbulent energy to generate an inertial-convective subrange. Thus, as well as the conventional Batchelor spectrum fitting approach, ε can be estimated using the temperature spectrum at lower wavenumbers. The inertial-convective subrange-derived turbulent energy dissipation rate εi compares well with the Batchelor spectrum method εb for higher dissipation rates. Sensor limitations mean that these estimates will be a lower bound. The highest dissipation rate estimates were in the uppermost data bin, indicating the importance of resolving right to the surface. Velocimeter results show that the surface waves modulate the rise velocity of the profiler, with variations reaching 75% of the deep water profiler speed. This increases the uncertainty in the transformation of spectra from frequency to wavenumber space using Taylor's frozen-field hypothesis. The use of an inertial convective structure-function-derived energy dissipation rate avoids this transformation. However, the structure function results are not encouraging as they provide a very poor estimate due to the sensitivity of the calculations and the low signal-to-noise ratio in the data. Repeated profiling illustrates the variability of turbulence intensity near the surface and also enables a reliable estimate of the background temperature gradient to be derived. This provides an improved estimate of vertical diffusion of heat.

Corresponding author address: Craig Stevens, National Institute for Water and Atmospheric Research, Greta Point, P.O. Box 14-901, Kilbirnie, Wellington, New Zealand. Email: c.stevens@niwa.cri.nz

Abstract

Oceanic turbulence very near the water surface controls heat, momentum, energy, and mass transfer at the air–sea interface. This study examines the use of a rising temperature microstructure profiler for determination of the rate of turbulent energy dissipation ε beneath a water surface dominated by wind-driven surface gravity waves. Under short-fetch wind waves there is sufficient turbulent energy to generate an inertial-convective subrange. Thus, as well as the conventional Batchelor spectrum fitting approach, ε can be estimated using the temperature spectrum at lower wavenumbers. The inertial-convective subrange-derived turbulent energy dissipation rate εi compares well with the Batchelor spectrum method εb for higher dissipation rates. Sensor limitations mean that these estimates will be a lower bound. The highest dissipation rate estimates were in the uppermost data bin, indicating the importance of resolving right to the surface. Velocimeter results show that the surface waves modulate the rise velocity of the profiler, with variations reaching 75% of the deep water profiler speed. This increases the uncertainty in the transformation of spectra from frequency to wavenumber space using Taylor's frozen-field hypothesis. The use of an inertial convective structure-function-derived energy dissipation rate avoids this transformation. However, the structure function results are not encouraging as they provide a very poor estimate due to the sensitivity of the calculations and the low signal-to-noise ratio in the data. Repeated profiling illustrates the variability of turbulence intensity near the surface and also enables a reliable estimate of the background temperature gradient to be derived. This provides an improved estimate of vertical diffusion of heat.

Corresponding author address: Craig Stevens, National Institute for Water and Atmospheric Research, Greta Point, P.O. Box 14-901, Kilbirnie, Wellington, New Zealand. Email: c.stevens@niwa.cri.nz

Save
  • Agrawal, Y. C., Terray E. A. , Donelan M. A. , Hwang P. A. , Williams A. J. III, Drennan W. M. , Kahma K. K. , and Kitaigorodskii S. A. , 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359 , 219220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anis, A., and Moum J. , 1995: Surface wave–turbulence interactions: Scaling ε(z) near the sea surface. J. Phys. Oceanogr, 25 , 20252045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. D., and Imberger J. , 1986: Vertically rising microstructure profiler. J. Atmos. Oceanic Technol, 3 , 462471.

  • Davis, R. E., Webb D. C. , Regier L. A. , and Dufour J. , 1992: The Autonomous Lagrangian Circulation Explorer (ALACE). J. Atmos. Oceanic Technol, 9 , 264285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., and Caldwell D. R. , 1980: Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res, 85 , 19101916.

  • Donelan, M. A., Hamilton J. , and Hui W. H. , 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London A, 315 , 509562.

  • Drennan, W. M., Donelan M. A. , Terray E. A. , and Katsaros K. B. , 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr, 26 , 808815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., Fairall C. W. , Mestayer P. G. , and Larsen S. E. , 1991: A study of the inertial-dissipation method for computing air–sea fluxes. J. Geophys. Res, 96 , 1068910711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliot, J. A., and Oakey N. S. , 1975: Horizontal coherence of temperature microstructure. J. Geophys. Res, 5 , 506515.

  • Emery, W. J., and Thomson R. E. , 1997: Data Analysis Methods in Physical Oceanography. Pergamon, 634 pp.

  • Fairall, C. W., Edson J. B. , Larsen S. E. , and Mestayer P. G. , 1990: Inertial-dissipation air–sea flux measurements: A prototype system using real-time spectral computations. J. Atmos. Oceanic Technol, 7 , 425453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and Farmer D. M. , 1999: Near-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr, 29 , 480499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Grant, H. L., Hughes B. A. , Williams R. B. , and Moilliet A. , 1968: The spectrum of temperature fluctuations in turbulent flow. J. Fluid Mech, 34 , 423442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1999: Uncertainties and limitations in measuring ε and χt. J. Atmos. Oceanic Technol, 16 , 14831490.

  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor, 78 , 215246.

  • Kocsis, O., Prandke H. , Stips A. , Simon A. , and Wüest A. , 1999: Comparison of dissipation of turbulent kinetic energy determined from shear and temperature microstructure. J. Mar. Syst, 21 , 6784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luketina, D. A., and Imberger J. , 2001: Determining turbulent kinetic energy dissipation from Batchelor curve fitting. J. Atmos. Oceanic Technol, 18 , 100113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., and Terray E. A. , 1983: Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr, 13 , 20002007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNeil, C. L., and Merlivat L. , 1996: The warm oceanic surface layer: Implications for CO2 fluxes and surface gas measurements. Geophys. Res. Lett, 23 , 35753578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 1998: An inertial-dissipation method for estimating turbulent flux in buoyancy-driven, convective boundary layers. J. Geophys. Res, 103 , 32493255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr, 12 , 256271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr, 10 , 8389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., Farmer D. M. , Vagle S. , Thorpe S. A. , and Cure M. , 1992: Measurements of bubble plumes and turbulence from a submarine. Atmos.–Ocean, 30 , 419440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B., Anis A. , and Thompson K. , 2000: Maximum likelihood spectral fitting: The Batchelor spectrum. J. Atmos. Oceanic Technol, 17 , 15411555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., Trowbridge J. H. , and Williams A. J. , 2001: The budgets of turbulent kinetic energy and scalar variance in the continental shelf bottom boundary layer. J. Geophys. Res, 106 , 95519564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, J., and Davis R. E. , 1995: Observations of temperature microstructure in NATRE. J. Phys. Oceanogr, 25 , 19131929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., Vershinsky N. V. , and Bezverchni V. A. , 1988: Small-scale turbulence measurements in the thin surface layer of the ocean. Deep-Sea Res, 35 , 18591874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, C. L., Smith M. J. , and McGregor J. A. , 2002: Estimation of whitecap coverage percentage using shallow grazing-angle video and FMICW radar. Gas Transfer at Water Surfaces, Geophys. Monogr., Vol. 127, Amer. Geophys. Union, 213–218.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. W., and Grant H. L. , 1962: Determination of the rate of dissipation of turbulent kinetic energy near the sea surface in the presence of waves. J. Geophys. Res, 67 , 31773180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, E. A., Donelan M. A. , Agrawal Y. C. , Drennan W. M. , Kahma K. K. , Williams A. J. III, Hwang P. A. , and Kitaigorodskii S. A. , 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr, 26 , 792807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1993: Energy loss by breaking waves. J. Phys. Oceanogr, 23 , 24982502.

  • Ward, B., and Minnett P. J. , 2002: An autonomous profiler for near surface temperature measurements. Gas Transfer at Water Surfaces, Geophys. Monogr., 127, Amer. Geophys. Union, 167–172.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., Izumi Y. , and Collins S. A. , 1971: Behavior of the refractive-index-structure parameter near the ground. J. Opt. Soc. Amer, 61 , 16461650.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 110 60
PDF Downloads 62 25 0