Retrieval of Sea Surface Temperature from Space, Based on Modeling of Infrared Radiative Transfer: Capabilities and Limitations

Christopher J. Merchant Atmospheric and Environmental Science, The University of Edinburgh, Edinburgh, United Kingdom

Search for other papers by Christopher J. Merchant in
Current site
Google Scholar
PubMed
Close
and
Pierre Le Borgne Centre de Meteorologie Spatiale, Meteo-France, Lannion, France

Search for other papers by Pierre Le Borgne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (BTs). Typically, an estimate of SST is formed from a weighted combination of BTs at a few wavelengths, plus an offset. This paper addresses two questions about the radiative transfer modeling approach to deriving these weighting and offset coefficients. How precisely specified do the coefficients need to be in order to obtain the required SST accuracy (e.g., scatter <0.3 K in week-average SST, bias <0.1 K)? And how precisely is it actually possible to specify them using current forward models? The conclusions are that weighting coefficients can be obtained with adequate precision, while the offset coefficient will often require an empirical adjustment of the order of a few tenths of a kelvin against validation data. Thus, a rational approach to defining retrieval coefficients is one of radiative transfer modeling followed by offset adjustment. The need for this approach is illustrated from experience in defining SST retrieval schemes for operational meteorological satellites. A strategy is described for obtaining the required offset adjustment, and the paper highlights some of the subtler aspects involved with reference to the example of SST retrievals from the imager on the geostationary satellite GOES-8.

Corresponding author address: Dr. Christopher J. Merchant, Institute for Atmospheric and Environmental Sciences, The University of Edinburgh, Room 8207, JCMB, King's Bldgs., Mayfield Rd., EH9 3JZ Edinburgh, United Kingdom. Email: chris.merchant@ed.ac.uk

Abstract

The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (BTs). Typically, an estimate of SST is formed from a weighted combination of BTs at a few wavelengths, plus an offset. This paper addresses two questions about the radiative transfer modeling approach to deriving these weighting and offset coefficients. How precisely specified do the coefficients need to be in order to obtain the required SST accuracy (e.g., scatter <0.3 K in week-average SST, bias <0.1 K)? And how precisely is it actually possible to specify them using current forward models? The conclusions are that weighting coefficients can be obtained with adequate precision, while the offset coefficient will often require an empirical adjustment of the order of a few tenths of a kelvin against validation data. Thus, a rational approach to defining retrieval coefficients is one of radiative transfer modeling followed by offset adjustment. The need for this approach is illustrated from experience in defining SST retrieval schemes for operational meteorological satellites. A strategy is described for obtaining the required offset adjustment, and the paper highlights some of the subtler aspects involved with reference to the example of SST retrievals from the imager on the geostationary satellite GOES-8.

Corresponding author address: Dr. Christopher J. Merchant, Institute for Atmospheric and Environmental Sciences, The University of Edinburgh, Room 8207, JCMB, King's Bldgs., Mayfield Rd., EH9 3JZ Edinburgh, United Kingdom. Email: chris.merchant@ed.ac.uk

Save
  • Brisson, A., Eastwood S. , Le Borgne P. , and Marsouin A. , 2001: O&SI SAF sea surface temperatures: Pre-operational results. Proc. 2001 EUMETSAT Meteorological Satellite Data Users' Conf., Darmstadt, Germany, EUMETSAT, 152–159.

    • Search Google Scholar
    • Export Citation
  • Brisson, A., Le Borgne P. , and Marsouin A. , 2002: Results of one year of preoperational production of sea surface temperatures from. GOES-8. J. Atmos. Oceanic Technol, 19 , 16381652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, F., 2002: Sampled databases of 60-level atmospheric profiles from the ECMWF analyses. EUMETSAT Tech. Rep. NWP-SAF-EC-TR-004, Version 1.0, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Deschamps, P. Y., and Phulpin T. , 1980: Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 μm. Bound.-Layer Meteor, 18 , 131143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Nightingale T. J. , Sheasby T. , Turner J. , Robinson I. S. , and Emery W. J. , 1999: Implications of the oceanic thermal skin temperature deviation at high wind speed. Geophys. Res. Lett, 26 , 25052508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Minnett P. J. , Gentemann C. , Nightingale T. J. , Barton I. J. , Ward B. , and Murray M. J. , 2002: Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15 , 353369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, D. P., 1988: Atmospheric transmittance and radiance calculations using line-by-line computer models. Proc. SPIE, 298 , 123.

  • Emery, W. J., Baldwin D. J. , Schlussel P. , and Reynolds R. W. , 2001: Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements. J. Geophys. Res, 106 , 23872405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Godfrey J. S. , Wick G. A. , Edson J. B. , and Young G. S. , 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res, 101 , 12951308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francois, C., Brisson A. , Le Borgne P. , and Marsouin A. , 2002: Definition of a radiosounding database for sea surface brightness temperature simulations—Application to sea surface temperature retrieval algorithm determination. Remote Sens. Environ, 81 , 309326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., Donlon C. J. , Stuart-Menteth A. , and Wentz F. J. , 2003: Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett.,30, 1140, doi:10.1029/ 2002GL016291.

    • Search Google Scholar
    • Export Citation
  • Han, Y., Shaw J. A. , Churnside J. H. , Brown P. D. , and Clough S. A. , 1997: Infrared spectral radiance measurements in the tropical Pacific atmosphere. J. Geophys. Res, 102 , 43534356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. X., and Weinreb M. , 1996: GOES-8 imager midnight effects and slope correction. Proc. SPIE, 2812 , 596607.

  • Kearns, E. J., Hanafin J. A. , Evans R. H. , Minnett P. J. , and Brown O. B. , 2000: An independent assessment of Pathfinder AVHRR sea surface temperature accuracy using the Marine-Atmosphere Emitted Radiance Interferometer (M-AERI). Bull. Amer. Meteor. Soc, 81 , 15251536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilpatrick, K. A., Podesta G. P. , and Evans R. , 2001: Overview of the NOAA/NASA Advanced Very High Resolution Radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res, 106 , 91799197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llewellyn-Jones, D. T., Minnett P. J. , Saunders R. W. , and Zavody A. M. , 1984: Satellite multichannel infrared measurements of sea-surface temperature of the NE Atlantic Ocean using AVHRR2. Quart. J. Roy. Meteor. Soc, 110 , 613631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClain, E. P., Pichel W. G. , and Walton C. C. , 1985: Comparative performance of AVHRR-based multichannel sea-surface temperatures. J. Geophys. Res, 90 , 15871601.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Harris A. R. , 1999: Toward the elimination of bias in satellite retrievals of sea surface temperature 2. Comparison with in situ measurements. J. Geophys. Res, 104 , 2357923590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., Harris A. R. , Murray M. J. , and Zavody A. M. , 1999: Toward the elimination of bias in satellite retrievals of sea surface temperature 1. Theory, modeling and interalgorithm comparison. J. Geophys. Res, 104 , 2356523578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Vomel H. , Paukkunen A. , Heymsfield A. J. , and Oltmans S. J. , 2001: Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J. Atmos. Oceanic Technol, 18 , 135156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, M. J., Allen M. R. , Merchant C. J. , Harris A. R. , and Donlon C. J. , 2000: Direct observations of skin-bulk SST variability. Geophys. Res. Lett, 27 , 11711174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys, 14 , 609624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 1990: Characterization and error analysis of profiles retrieved from remote sounding measurements. J. Geophys. Res, 95 , 55875595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 2003: The Hitran molecular spectroscopic database: Edition of 2000 including updates through 2001. J. Quant. Spectros. Radiat. Transfer, 82 , 544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., 1967: The temperature at the ocean–air interface. J. Atmos. Sci, 24 , 269273.

  • Saunders, R., Matricardi M. , and Brunel P. , 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc, 125 , 4071425.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and Bretherton F. P. , 1994: Evaluation of water vapor distribution in general circulation models using satellite observations. J. Geophys. Res, 99 , 11871210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, C. C., Pichel W. G. , Sapper J. F. , and May D. A. , 1998: The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res, 103 , 2799928012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, P. D., Allen M. R. , and Nightingale T. J. , 1996: Wind speed effects on sea surface emission and reflection for the along track scanning radiometer. J. Atmos. Oceanic Technol, 13 , 126141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X. Q., and Smith W. L. , 1997: Emissivity of rough sea surface for 8–13 μm: Modeling and verification. Appl. Opt, 36 , 26092619.

  • Zavody, A. M., Mutlow C. T. , and Llewellyn-Jones D. T. , 1995: A radiative transfer model for sea-surface temperature retrieval for the along-track scanning radiometer. J. Geophys. Res, 100 , 937952.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 661 182 22
PDF Downloads 528 141 6