• Ackerman, T., and Stokes G. , 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3845.

  • Ansmann, A., Riebesell M. , Wandinger U. , Weitkamp C. , Voss E. , Lahmann W. , and Michaelis W. , 1992: Combined Raman Elastic-Backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio. Appl. Phys. B, 55 , 1828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browell, E. V., 1989: Differential absorption lidar sensing of ozone. Proc. IEEE, 77 , 419432.

  • Browell, E. V., and Ismail S. , 1995: First lidar measurements of water vapor and aerosols from a high-altitude aircraft. Proc. Seventh Topical Meeting of the Optical Remote Sensing of the Atmosphere, Salt Lake City, UT, OSA, 212–214.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Coauthors, 1997: LASE Validation Experiment. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Springer-Verlag, 289–295.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Ferrare R. , and Coauthors, 2000: Hurricane water vapor, aerosol, and cloud distributions determined from airborne lidar measurements. Preprints, Symp. on Lidar Atmospheric Monitoring, Long Beach, CA, Amer. Meteor. Soc., 65–67.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Coauthors, 2001: Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March– April 1999: Results from PEM Tropics B Field Experiment. J. Geophys. Res, 106 (D23) 3248134502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busen, R., and Buck A. L. , 1995: A high-performance hygrometer for aircraft use: Description, installation and flight data. J. Atmos. Oceanic Technol, 12 , 7384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Iacono M. I. , and Moncet J. L. , 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res, 97 (D14) 1576115785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Brown P. D. , Liljegren J. C. , Shippert T. R. , Turner D. D. , Knuteson R. O. , Revercomb H. E. , and Smith W. L. , 1996: Implications for atmospheric state specification from the AERI/ LBLRTM quality measurement experiment and the MWR/ LBLRTM quality measurement experiment. Proc. Sixth ARM Science Team Meeting, San Antonio, TX, U.S. Dept. of Energy, CONF-9603149, 45–49. [Available online at http://www.arm.gov/docs/documents/technical/conf_9603/cloug_96.pdf.].

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Brown P. D. , Turner D. D. , Shippert T. R. , Liljegren J. C. , Tobin D. C. , Revercomb H. E. , and Knuteson R. O. , 1999: Effect on the calculated spectral surface radiances due to MWR scaling of sonde water vapor profiles. Proc. Ninth ARM Science Team Meeting, San Antonio, TX, U.S. Dept. of Energy, 1–8. [Available online at http://www.arm.gov/docs/documents/technical/ conf_9903/clough-99.pdf.].

    • Search Google Scholar
    • Export Citation
  • da Silveira, R. B., Fisch G. , Machado L. A. T. , Dall' Antonia A. M. Jr., Sapucci L. F. , Fernandes D. , and Nash J. , 2003: Executive summary of the WMO intercomparison of GPS radiosondes. WMO Instruments and Observing Methods Rep. 76, WMO/TD 1153, 1–15.

    • Search Google Scholar
    • Export Citation
  • Diskin, G. S., Podolske J. R. , Sachse G. W. , and Slate T. A. , 2002: Open-path airborne tunable diode laser hygrometer. Proc. SPIE, 4817 , 132pp.

    • Search Google Scholar
    • Export Citation
  • DOE, 1990: Atmospheric Radiation Measurement Program Plan. U.S. Department of Energy, DOE/ER-0441, 116 pp.

  • Ellingson, R. E., 1998: The state of the ARM-IRF accomplishments through 1997. Proc. Eighth ARM Science Team Meeting, Tucson, AZ, U.S. Dept. of Energy, DOE/ER-0738, 245–248. [Available online at http://www.arm.gov/docs/documents/technical/conf_9803/ellingson-98.pdf.].

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., Melfi S. H. , Whiteman D. N. , Evans K. D. , Schmidlin F. J. , and Starr D. O'C. , 1995: A Comparison of water vapor measurements made by Raman lidar and radiosondes. J. Atmos. Oceanic Technol, 12 , 11771195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors,. 1999: LASE measurements of water vapor, aerosols, and clouds during CAMEX-3. Proc. Symp. on Optical Remote Sensing of the Atmosphere, Santa Barbara, CA, OSA, 114–116.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2000a: Comparison of aerosol optical properties and water vapor among ground and airborne lidars and sun photometers during TARFOX. J. Geophys. Res, 105 (D8) 99179933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2000b: Comparisons of LASE, aircraft, and satellite measurements of aerosol optical properties and water vapor during TARFOX. J. Geophys. Res, 105 (D8) 99359947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2002: Characterization of upper troposphere water vapor measurements during AFWEX using LASE. Proc. 21st Int. Laser Radar Conf., Quebec City, Canada, International Coordination-Group for Laser Atmospheric Studies, 397–400.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E., Ed.,. 2000: AIRS Team Science Validation Plan. Version 2.1.1., JPL D-16822.

  • Fujiwara, M., Shiotani M. , Hasebe F. , Vomel H. , Oltmans S. J. , and Ruppert P. , 2003: Performance of the Meteolabor “Snow White” chilled-mirror hygrometer in the tropical troposphere: Comparison with the Vaisala RS80 A/H-Humicap sensors. J. Atmos. Oceanic Technol, 20 , 15341542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and Gratch S. , 1946: Low-pressure properties of water from −160 to 212 F. Trans. Amer. Soc. Heat. Vent. Eng, 52 , 95122.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., Blair F. H. , Bisson S. E. , and Turner D. D. , 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt, 37 , 49794990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossmann, B., and Browell E. V. , 1989: Spectroscopy of water vapor in the 720-nm wavelength region: Line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts. J. Mol. Spectrosc, 136 , 264294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyland, R. W., and Wexler A. , 1983: Formulations for the thermodynamic properties of the saturated phases of H2O from 173: 15K to 473.15K. ASHRAE Trans, 89 (2A) 500519.

    • Search Google Scholar
    • Export Citation
  • Ismail, S., and Browell E. V. , 1989: Airborne and spaceborne lidar measurements of water vapor profiles: A sensitivity analysis. Appl. Opt, 28 , 36033615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ismail, S., Browell E. V. , Ferrare R. A. , Kooi S. A. , Clayton M. B. , Brackett V. G. , and Russell P. B. , 2000: LASE measurements of aerosol and water vapor profiles during TARFOX. J. Geophys. Res, 105 (D8) 99039916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and Sassen K. , 1998a: Cirrus cloud simulation using explicit microphysics and radiation. Part I: Model description. J. Atmos. Sci, 55 , 18081821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and Sassen K. , 1998b: Cirrus cloud simulation using explicit microphysics and radiation. Part II: Microphysics, vapor and ice mass budgets, and optical and radiative properties. J. Atmos. Sci, 55 , 18221845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kley, D., Russell J. M. III, and Philips C. , Eds.,. 2000: SPARC assessment of upper tropospheric and stratospheric water vapour. WCRP 133, WMO/TD No. 1043, SPARC Rep. 2, 312 pp.

    • Search Google Scholar
    • Export Citation
  • Kooi, S. A., Ferrare R. A. , Ismail S. , Browell E. V. , Clayton M. B. , Brackett V. G. , and Halverson J. B. , 2002: Comparison of LASE water vapor measurements with dropwindsonde measurements during the Third and Fourth Convection and Moisture Experiments (CAMEX-3 and CAMEX-4). Proc. 21st Int. Laser Radar Conf., Quebec City, Canada, International Coordination-Group for Laser Atmospheric Studies, 693–696.

    • Search Google Scholar
    • Export Citation
  • Leiterer, U., Dier H. , and Naebert T. , 1997: Improvements in radiosonde humidity profiles using RS80/RS90 radiosondes of Vaisala. Beitr. Phys. Atmos, 70 , 319336.

    • Search Google Scholar
    • Export Citation
  • Lesht, B. M., 1995: An evaluation of ARM radiosonde operational performance. Preprints, Ninth Symp. on Meteorological Observations and Instrumentation, Charlotte, NC, Amer. Meteor. Soc., 6–10.

    • Search Google Scholar
    • Export Citation
  • Lesht, B. M., and Liljegren J. C. , 1996: Comparison of precipitable water vapor measurements obtained by microwave radiometers and radiosondes at the SGP/CART site. Proc. Sixth ARM Science Team Meeting, San Antonio, TX, U.S. Dept. of Energy, CONF-9603149, 165–168. [Available online at http://www.arm.gov/ docs/documents/technical/conf_9603/lesh_96.pdf.].

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 2000: Automatic self-calibration of the ARM microwave radiometers. Microwave Radiometry and Remote Sensing of the Environment, P. Pampaloni, Ed., VSP Press, 433–441. [Available online at http://www.arm.gov/docs/instruments/publications/mwrpcalibration.pdf.].

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 2003: Improved retrievals of temperature and water vapor profiles using a twelve channel microwave radiometer. Proc. 13th ARM Science Team Meeting, XXXXX, U.S. Dept. of Energy, 165–168. [Available online at http://www.arm.gov/docs/documents/technical/conf_0304/liljegren-jc.pdf.].

    • Search Google Scholar
    • Export Citation
  • List, R. J., 1984: Smithsonian Meteorological Tables. 5th ed. Smithsonian Institution, 350 pp.

  • May, R. D., 1998: Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O. J. Geophys. Res, 103 , 1916119172.

  • Miloshevich, L. M., Vomel H. , Paukkunen A. , Heymsfield A. J. , and Oltmans S. J. , 2001: Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J. Atmos. Oceanic Technol, 18 , 135155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Paukkunen A. , Vömel H. , and Oltmans S. J. , 2002: Impact of Vaisala radiosonde humidity corrections on ARM IOP data. Proc. 12th ARM Science Team Meeting, St. Petersburg, FL, U.S. Dept. of Energy, 1–9. [Available online at http://www.arm.gov/docs/documents/technical/conf_0204/miloshevich-lm.pdf.].

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Vömel H. , Oltmans S. J. , and Paukkunen A. , 2003: In-situ validation of a correction for time-lag and bias errors in Vaisala RS80-H radiosonde humidity measurements. Proc. 13th ARM Science Team Meeting, Broomfield, CO, U.S. Dept. of Energy, 1–10. [Available online at http://www.arm.gov/docs/documents/ technical/conf_0304/miloshevich-lm.pdf.].

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Paukkunen A. , Vöemel H. , and Oltmans S. J. , 2004: Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol, 21 , 13051327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res, 102 , 1666316682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore A. S. Jr., , and Coauthors, 1997: Development of the Lidar Atmospheric Sensing Experiment (LASE), an advanced airborne DIAL instrument. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Springer-Verlag, 281–288.

    • Search Google Scholar
    • Export Citation
  • Nagel, D., Leiterer U. , Dier H. , Kats A. , Reichard J. , and Behrendt A. , 2001: High accuracy humidity measurements using the standardized frequency method with a research upper-air sounding system. Meteor. Z, 10 , 395405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 1976: U.S. Standard Atmosphere, 1976,. NOAA-S/T 76-1562, 227 pp.

  • Oltmans, S. J., 1985: Measurements of water vapor in the stratosphere with a frost point hygrometer. Proc. 1985 Int. Symp. on Moisture and Humidity, Washington, DC, Instrument Society of America, 251–258.

    • Search Google Scholar
    • Export Citation
  • Podolske, J. R., Sachse G. W. , and Diskin G. S. , 2003: Calibration and data retrieval algorithms for the NASA Langley/Ames Diode Laser Hygrometer for the NASA Transport and Chemical Evolution Over the Pacific (TRACE-P) mission. J. Geophys. Res.,108, 8792, doi:10.1029/2002JD003156.

    • Search Google Scholar
    • Export Citation
  • Ponsardin, P. L., and Browell E. V. , 1997: Measurements of H2 16O linestrengths and air-induced broadenings and shifts in the 815-nm spectral regions. J. Mol. Spectrosc, 185 , 5870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., Feltz W. F. , Knuteson R. O. , Tobin D. C. , van Delst P. F. W. , and Whitney B. A. , 1998: Accomplishments of the Water Vapor IOPs: An overview. Proc. Eighth ARM Science Team Meeting, Tucson, AZ, U.S. Department of Energy, DOE/ ER-0738, 639–645. [Available online at http://www.arm.gov/ docs/documents/technical/conf_9803/revercomb-98.pdf.].

    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., and Coauthors, 2003: The Atmospheric Radiation Measurement (ARM) Program's Water Vapor Intensive Observation Periods: Overview, accomplishments, and future challenges. Bull. Amer. Meteor. Soc, 84 , 217236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P., 1998: Water vapor continuum absorption: A comparison of measurements and models. Radio Sci, 33 , 919928.

  • Rothman, L. S., and Coauthors, 1992: The HITRAN molecular database: Editions of 1991 and 1992. J. Quant. Spectrosc. Radiat. Transfer, 48 , 469507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schermaul, R., Learner R. C. M. , Nownham D. A. , Williams R. G. , Ballard J. , Zobhov N. F. , Belmiloud D. , and Tennyson J. , 2001: The water vapor spectrum in the 8600–15000 cm−1: Experimental and theoretical studies for a new spectral line database. J. Mol. Spectrosc, 208 , 3242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, M. G., and Coauthors, 1999: On the origin of tropospheric ozone and NOx over the tropical South Pacific. J. Geophys. Res, 104 , 58295843.

  • Sherlock, V., Hauchecorne A. , and Lenoble J. , 1999: Methodology for the independent calibration of Raman backscatter water-vapor lidar systems. Appl. Opt, 38 , 58165837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shotland, R. M., 1966: Some observations of the vertical profile of water vapor by means of a ground-based optical radar. Proc. Fourth Symp. on Remote Sensing of Environment, Ann Arbor, MI, University of Michigan, 273–283.

    • Search Google Scholar
    • Export Citation
  • Smout, R., Nash J. , Lyth D. , and Elms J. , 2002: Comparisons between Vaisala RS90 and Snow White relative humidity measurements from the WMO GPS radiosonde comparison in Brazil (2001) and Ascension Island (1999). Proc. WMO Tech. Conf. on Meteorological and Environmental Instruments and Methods of Observation (TECO-2002), Bratislava, Slovak Republic, WMO, Rep. 75, WMO/TD-No. 1123, 1–4.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and Lanzante J. R. , 1996: An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor. J. Climate, 9 , 12351250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., Ackerman S. A. , Starr D. O. , Melfi S. H. , and Ferrare R. A. , 1994: Comparison of upper tropospheric water vapor from GOES, Raman lidar, and cross-chain tracked loran atmospheric sounding system measurements. J. Geophys. Res, 99 (D10) 2100521016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., Turner D. D. , Lesht B. , and Miloshevich L. , 2004: An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement Program. J. Geophys. Res, 109 .D04105,. doi:10.1029/ 2003JD003828.

    • Search Google Scholar
    • Export Citation
  • Sonnenfroh, D. M., Kessler W. J. , Magill J. C. , Upschulte B. L. , Allen M. G. , and Barrick J. D. W. , 1998: In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer. Appl. Phys. B. Laser Opt, 67 , 275282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spichtinger, P., Gierens K. , Leiterer U. , and Dier H. , 2003: Ice supersaturation in the tropopause region over Lindenberg, Germany. Meteor. Z, 12 (3) 143156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., Revercomb H. E. , and Turner D. D. , 2002: Overview of the ARM/FIRE Water Vapor Experiment (AFWEX). Proc. 12th ARM Science Team Meeting, St. Petersburg, FL, U.S. Dept. of Energy, XXX–XXX. [Available online at http://www.arm.gov/docs/documents/technical/conf_0204/tobin(2)-dc.pdf.].

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Goldsmith J. E. M. , 1999: Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program's 1996 and 1997 Water Vapor Intensive Observation Periods. J. Atmos. Oceanic Technol, 16 , 10621076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Ferrare R. A. , Heilman L. A. , Feltz W. F. , and Tooman T. P. , 2002: Automated retrievals of aerosol extinction coefficient from a Raman lidar. J. Atmos. Oceanic Technol, 19 , 3750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Lesht B. M. , Clough S. A. , Liljegren J. C. , Revercomb H. E. , and Tobin D. C. , 2003: Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Oceanic Technol, 20 , 117132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci, 61 , 25672675.

    • Search Google Scholar
    • Export Citation
  • Vance, A. K., Taylor J. P. , Hewison T. J. , and Elms J. , 2004: Comparison of in situ humidity data from aircraft, dropsonde, and radiosonde. J. Atmos. Oceanic Technol, 21 , 921932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vay, S. A., and Coauthors, 2000: Tropospheric water vapor measurements over the North Atlantic during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX). J. Geophys. Res, 105 , 37453755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., Oltmans S. J. , Hofmann D. J. , Deshler T. , and Rosen J. M. , 1995: The evolution of the dehydration in the Antarctic stratospheric vortex. J. Geophys. Res, 100 , 1391913926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., Fujiwara M. , Shiotani M. , Hasebe F. , Oltmans S. J. , and Barnes J. E. , 2003: The behavior of the Snow White chilled-mirror hygrometer in very dry conditions. J. Atmos. Oceanic Technol, 20 , 15601567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., 2002: Understanding and correcting humidity measurement errors from Vaisala RS80 and VIZ radiosondes. Proc. Radiosonde Workshop, Hampton, VA, Hampton University, 1–7.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Cole H. L. , Carlson D. J. , Miller E. R. , Beierle K. , Paukkunen A. , and Laine T. K. , 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol, 19 , 9811002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Carlson D. J. , Parsons D. B. , Hock T. F. , Lauritsen D. , Cole H. L. , Beierle K. , and Chamberlain E. , 2003: Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication. Geophys. Res. Lett.,30, 1860, doi:10.1029/ 2003GL016985.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., 2003a: Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Appl. Opt, 42 , 25712592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., 2003b: Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols. Appl. Opt, 42 , 25932605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Melfi S. H. , 1999: Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar. J. Geophys. Res, 104 , 3141131419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Melfi S. H. , and Ferrare R. A. , 1992: Raman lidar system for the measurement of water vapor and aerosols in the earth's atmosphere. Appl. Opt, 31 , 30683082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2001a: 2001: NASA/GSFC scanning Raman lidar participation in WVIOP2000 and AFWEX. Proc. 11th ARM Science Team Meeting, Atlanta, GA, U.S. Dept. of Energy, 1– 10. [Available online at http://www.arm.gov/docs/documents/ technical/conf_0103/whiteman-dn.pdf.].

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2001b: Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie. J. Geophys. Res, 106 (D6) 52115225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Evans K. , Demoz B. , Di Girolamo P. , Mielke B. , and Stein B. , 2002: Advances in Raman lidar measurements of water vapor. Proc. 21st Int. Laser Radar Conf., Quebec, QC, Canada, International Coordination-Group for Laser Atmospheric Studies, 551–554.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 6 6 6

Characterization of Upper-Troposphere Water Vapor Measurements during AFWEX Using LASE

View More View Less
  • 1 NASA Langley Research Center, Hampton, Virginia
  • | 2 SAIC/NASA Langley Research Center, Hampton, Virginia
  • | 3 Sandia National Laboratories, Livermore, California
  • | 4 Argonne National Lab, Argonne, Illinois
  • | 5 NASA Ames Research Center, Moffett Field, California
  • | 6 NASA Wallops Flight Facility, Wallops Island, Virginia
  • | 7 Pacific Northwest National Laboratory, Richland, Washington
  • | 8 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 9 University of Wisconsin—Madison, Madison, Wisconsin
  • | 10 National Center for Atmospheric Research, Boulder, Colorado
  • | 11 DIFA, Università della Basilicata, Potenza, Italy
Restricted access

Abstract

Water vapor mass mixing ratio profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the Atmospheric Radiation Measurement (ARM)–First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Water Vapor Experiment (AFWEX) are used as a reference to characterize upper-troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors over the Department of Energy (DOE) ARM Southern Great Plains (SGP) site in northern Oklahoma. LASE was deployed from the NASA DC-8 aircraft and measured water vapor over the ARM SGP Central Facility (CF) site during seven flights between 27 November and 10 December 2000. Initially, the DOE ARM SGP Cloud and Radiation Testbed (CART) Raman lidar (CARL) UTWV profiles were about 5%–7% wetter than LASE in the upper troposphere, and the Vaisala RS80-H radiosonde profiles were about 10% drier than LASE between 8 and 12 km. Scaling the Vaisala water vapor profiles to match the precipitable water vapor (PWV) measured by the ARM SGP microwave radiometer (MWR) did not change these results significantly. By accounting for an overlap correction of the CARL water vapor profiles and by employing schemes designed to correct the Vaisala RS80-H calibration method and account for the time response of the Vaisala RS80-H water vapor sensor, the average differences between the CARL and Vaisala radiosonde upper-troposphere water vapor profiles are reduced to about 5%, which is within the ARM goal of mean differences of less than 10%. The LASE and DC-8 in situ diode laser hygrometer (DLH) UTWV measurements generally agreed to within about 3%–4%. The DC-8 in situ frost point cryogenic hygrometer and Snow White chilled-mirror measurements were drier than the LASE, Raman lidars, and corrected Vaisala RS80H measurements by about 10%–25% and 10%–15%, respectively. Sippican (formerly VIZ Manufacturing) carbon hygristor radiosondes exhibited large variabilities and poor agreement with the other measurements. PWV derived from the LASE profiles agreed to within about 3% on average with PWV derived from the ARM SGP microwave radiometer. The agreement between the LASE and MWR PWV and the LASE and CARL UTWV measurements supports the hypotheses that MWR measurements of the 22-GHz water vapor line can accurately constrain the total water vapor amount and that the CART Raman lidar, when calibrated using the MWR PWV, can provide an accurate, stable reference for characterizing upper-troposphere water vapor.

Corresponding author address: Richard Ferrare, NASA Langley Research Center, Mail Stop 401A, Hampton, VA 23681. Email: richard.a.ferrare@nasa.gov

Abstract

Water vapor mass mixing ratio profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the Atmospheric Radiation Measurement (ARM)–First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Water Vapor Experiment (AFWEX) are used as a reference to characterize upper-troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors over the Department of Energy (DOE) ARM Southern Great Plains (SGP) site in northern Oklahoma. LASE was deployed from the NASA DC-8 aircraft and measured water vapor over the ARM SGP Central Facility (CF) site during seven flights between 27 November and 10 December 2000. Initially, the DOE ARM SGP Cloud and Radiation Testbed (CART) Raman lidar (CARL) UTWV profiles were about 5%–7% wetter than LASE in the upper troposphere, and the Vaisala RS80-H radiosonde profiles were about 10% drier than LASE between 8 and 12 km. Scaling the Vaisala water vapor profiles to match the precipitable water vapor (PWV) measured by the ARM SGP microwave radiometer (MWR) did not change these results significantly. By accounting for an overlap correction of the CARL water vapor profiles and by employing schemes designed to correct the Vaisala RS80-H calibration method and account for the time response of the Vaisala RS80-H water vapor sensor, the average differences between the CARL and Vaisala radiosonde upper-troposphere water vapor profiles are reduced to about 5%, which is within the ARM goal of mean differences of less than 10%. The LASE and DC-8 in situ diode laser hygrometer (DLH) UTWV measurements generally agreed to within about 3%–4%. The DC-8 in situ frost point cryogenic hygrometer and Snow White chilled-mirror measurements were drier than the LASE, Raman lidars, and corrected Vaisala RS80H measurements by about 10%–25% and 10%–15%, respectively. Sippican (formerly VIZ Manufacturing) carbon hygristor radiosondes exhibited large variabilities and poor agreement with the other measurements. PWV derived from the LASE profiles agreed to within about 3% on average with PWV derived from the ARM SGP microwave radiometer. The agreement between the LASE and MWR PWV and the LASE and CARL UTWV measurements supports the hypotheses that MWR measurements of the 22-GHz water vapor line can accurately constrain the total water vapor amount and that the CART Raman lidar, when calibrated using the MWR PWV, can provide an accurate, stable reference for characterizing upper-troposphere water vapor.

Corresponding author address: Richard Ferrare, NASA Langley Research Center, Mail Stop 401A, Hampton, VA 23681. Email: richard.a.ferrare@nasa.gov

Save