• Collard, A. D., Ackerman S. A. , Smith W. L. , Ma H. E. , Revercomb H. E. , Knuteson R. O. , and Lee S. C. , 1995: Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III: Ground-based HIS results. J. Atmos. Sci, 52 , 42644275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeSlover, D. H., Smith W. L. , Piironen P. K. , and Eloranta E. W. , 1999: A methodology for measuring cirrus cloud visible-to-infrared spectral optical depth ratios. J. Atmos. Oceanic Technol, 16 , 251262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DOE, 1990: Atmospheric Radiation Measurement Program plan. DOE/ER-0442 and DOE/ER-0441, U.S. Department of Energy, Washington, DC, 135 pp.

    • Search Google Scholar
    • Export Citation
  • Ellingson, R. E., and Fouquart Y. , 1991: The intercomparison of radiation codes in climate models: An overview. J. Geophys. Res, 96 , 89258927.

  • Ellingson, R. E., and Wiscombe W. J. , 1996: The Spectral Radiance Experiment (SPECTRE): Project description and sample results. Bull. Amer. Meteor. Soc, 77 , 19671985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., Smith W. L. , Knuteson R. O. , Revercomb H. E. , Woolf H. M. , and Howell H. B. , 1998: Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor, 37 , 857875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol, 21 , 17771789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luther, F., Ellingson R. , Fouquart Y. , Fels S. , Scott N. , and Wiscombe W. , 1988: Intercomparison of radiation codes in climate models (ICRCCM): Longwave clear-sky results. Bull. Amer. Meteor. Soc, 69 , 4048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Ackerman T. P. , Minnis P. , and Young D. F. , 1998: Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data. J. Geophys. Res, 103 , 2320723216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., Knuteson R. O. , Best F. A. , Osborne B. J. , Hanafin J. A. , and Brown O. B. , 2001: The Marine-Atmospheric Emitted Radiance Interferometer (M-AERI), a high-accuracy, sea-going infrared spectroradiometer. J. Atmos. Oceanic Technol, 18 , 9941013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., Buijs H. , Howell H. B. , LaPorte D. D. , Smith W. L. , and Sromovsky L. A. , 1988: Radiometric calibration of IR Fourier transform spectrometers: Solution to a problem with the High-Resolution Interferometer Sounder. Appl. Opt, 27 , 32103218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., and Coauthors, 2003: The ARM Program's water vapor intensive periods: Overview, initial accomplishments, and future challenges. Bull. Amer. Meteor. Soc, 84 , 217236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., and Coauthors, 1990: GAPEX: A Ground-Based Atmospheric Profiling Experiment. Bull. Amer. Meteor. Soc, 71 , 310318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Feltz W. F. , Knuteson R. O. , Revercomb H. E. , Howell H. B. , and Woolf H. M. , 1999: The retrieval of planetary boundary layer structure using ground-based infrared spectral radiance measurements. J. Atmos. Oceanic Technol, 16 , 323333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinhart, I. S., and Hart S. R. , 1968: Calibration curves for thermistors. Deep-Sea Res. Oceanogr. Abstr, 15 , 497503.

  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Testbed. Bull. Amer. Meteor. Soc, 75 , 12011221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sydnor, C. L., 1970: A numerical study of cavity radiometer emissivities. NASA JPL Tech. Rep. 32-1463.

  • Tobin, D. C., and Coauthors, 1999: Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements for 17 to 26 microns. J. Geophys. Res, 104 , 20812092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Feltz W. F. , and Ferrare R. A. , 2000: Continuous water profiles from operational ground-based active and passive remote sensors. Bull. Amer. Meteor. Soc, 81 , 13011317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Ackerman S. A. , Baum B. A. , Revercomb H. E. , and Yang P. , 2003: Cloud phase determination using ground-based AERI observations at SHEBA. J. Appl. Meteor, 42 , 701715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci, 61 , 26572675.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 15
PDF Downloads 19 19 19

Atmospheric Emitted Radiance Interferometer. Part I: Instrument Design

View More View Less
  • 1 Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

A ground-based Fourier transform spectrometer has been developed to measure the atmospheric downwelling infrared radiance spectrum at the earth's surface with high absolute accuracy. The Atmospheric Emitted Radiance Interferometer (AERI) instrument was designed and fabricated by the University of Wisconsin Space Science and Engineering Center (UW-SSEC) for the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program. This paper emphasizes the key features of the UW-SSEC instrument design that contribute to meeting the AERI instrument requirements for the ARM Program. These features include a highly accurate radiometric calibration system, an instrument controller that provides continuous and autonomous operation, an extensive data acquisition system for monitoring calibration temperatures and instrument health, and a real-time data processing system. In particular, focus is placed on design issues crucial to meeting the ARM requirements for radiometric calibration, spectral calibration, noise performance, and operational reliability. The detailed performance characteristics of the AERI instruments built for the ARM Program are described in a companion paper.

Corresponding author address: Dr. Robert O. Knuteson, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. Email: robert.knuteson@ssec.wisc.edu

Abstract

A ground-based Fourier transform spectrometer has been developed to measure the atmospheric downwelling infrared radiance spectrum at the earth's surface with high absolute accuracy. The Atmospheric Emitted Radiance Interferometer (AERI) instrument was designed and fabricated by the University of Wisconsin Space Science and Engineering Center (UW-SSEC) for the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program. This paper emphasizes the key features of the UW-SSEC instrument design that contribute to meeting the AERI instrument requirements for the ARM Program. These features include a highly accurate radiometric calibration system, an instrument controller that provides continuous and autonomous operation, an extensive data acquisition system for monitoring calibration temperatures and instrument health, and a real-time data processing system. In particular, focus is placed on design issues crucial to meeting the ARM requirements for radiometric calibration, spectral calibration, noise performance, and operational reliability. The detailed performance characteristics of the AERI instruments built for the ARM Program are described in a companion paper.

Corresponding author address: Dr. Robert O. Knuteson, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. Email: robert.knuteson@ssec.wisc.edu

Save