• Clough, S. A., and Iacono M. J. , 1995: Line-by-line calculations of atmospheric fluxes and cooling rates. 2: Applications to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J. Geophys. Res, 100 , 1651916535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol, 21 , 17631776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., Knuteson R. O. , Best F. A. , Osborne B. J. , Hanafin J. A. , and Brown O. B. , 2001: The Marine-Atmospheric Emitted Radiance Interferometer (M-AERI), a high-accuracy, sea-going infrared spectroradiometer. J. Atmos. Oceanic Technol, 18 , 9941013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., Buijs H. , Howell H. B. , LaPorte D. D. , Smith W. L. , and Sromovsky L. A. , 1988: Radiometric calibration of IR Fourier transform spectrometers: Solution to a problem with the High-Resolution Interferometer Sounder. Appl. Opt, 27 , 32103218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 1992: The HITRAN molecular database: Editions of 1991 and 1992. J. Quant. Spectrosc. Radiat. Transfer, 48 , 469507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sromovsky, L. A., 2003: Radiometric errors in complex Fourier transform spectrometry. Appl. Opt, 42 , 17791787.

  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Testbed. Bull. Amer. Meteor. Soc, 75 , 12011221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci, 61 , 26572675.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 20
PDF Downloads 19 19 19

Atmospheric Emitted Radiance Interferometer. Part II: Instrument Performance

View More View Less
  • 1 Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

The Atmospheric Emitted Radiance Interferometer (AERI) instrument was developed for the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program by the University of Wisconsin Space Science and Engineering Center (UW-SSEC). The infrared emission spectra measured by the instrument have the sensitivity and absolute accuracy needed for atmospheric remote sensing and climate studies. The instrument design is described in a companion paper. This paper describes in detail the measured performance characteristics of the AERI instruments built for the ARM Program. In particular, the AERI systems achieve an absolute radiometric calibration of better than 1% (3σ) of ambient radiance, with a reproducibility of better than 0.2%. The knowledge of the AERI spectral calibration is better than 1.5 ppm (1σ) in the wavenumber range 400– 3000 cm−1.

Corresponding author address: Dr. Robert O. Knuteson, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. Email: robert.knuteson@ssec.wisc.edu

Abstract

The Atmospheric Emitted Radiance Interferometer (AERI) instrument was developed for the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program by the University of Wisconsin Space Science and Engineering Center (UW-SSEC). The infrared emission spectra measured by the instrument have the sensitivity and absolute accuracy needed for atmospheric remote sensing and climate studies. The instrument design is described in a companion paper. This paper describes in detail the measured performance characteristics of the AERI instruments built for the ARM Program. In particular, the AERI systems achieve an absolute radiometric calibration of better than 1% (3σ) of ambient radiance, with a reproducibility of better than 0.2%. The knowledge of the AERI spectral calibration is better than 1.5 ppm (1σ) in the wavenumber range 400– 3000 cm−1.

Corresponding author address: Dr. Robert O. Knuteson, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. Email: robert.knuteson@ssec.wisc.edu

Save