• Asgharian, B., and Godo M. N. , 1997: Transport and deposition of spherical particles and fibers in an improved virtual impactor. Aerosol Sci. Technol, 27 , 499506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, M. C., Hegg D. A. , and Hobbs P. V. , 1989: Measurements of atmospheric gas-phase and aqueous phase hydrogen peroxide concentrations in winter on the east coast of the United States. Tellus, 41B , 6169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bator, A., and Collett J. L. Jr., 1997: Cloud chemistry varies with drop size. J. Geophys. Res, 102 , 2807128078.

  • Baumgardner, D., 1989: Airborne measurements for cloud microphysics. NCAR Research Aviation Facility Bulletin 24, National Center for Atmospheric Research, Boulder, CO, 22 pp.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., 1996: Status of in-situ microphysical measurements. Proc. ETL/CSU Cloud Modeling and Measurement Workshop, Boulder, CO, NOAA/ETL, 67–102.

    • Search Google Scholar
    • Export Citation
  • Berglund, R. N., and Liu B. Y. H. , 1973: Generation of monodisperse aerosol standards. Environ. Sci. Technol, 7 , 147153.

  • Bird, R. B., Stewart W. E. , and Lightfoot E. N. , 1960: Transport Phenomena. John Wiley and Sons, 780 pp.

  • Bogen, J., 1974: Trace elements in precipitation and cloud water in the area of Heidelberg, measured by instrumental neutron activation analysis. Atmos. Environ, 8 , 835844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q., and Ahmadi G. , 1997: Deposition of particles in a turbulent pipe flow. J. Aerosol Sci, 28 , 789796.

  • Cossali, G. E., Coghe A. , and Marengo M. , 1997: The impact of a single drop on a wetted solid surface. Exp. Fluids, 22 , 463472.

  • Couture, M. D., Banic C. M. , Schemenauer R. S. , Leaitch W. R. , and Wiebe H. A. , 1998: Comparison of the chemistry of fog water from mountain sites and cloud water from airborne platforms. Proc. First Int. Conf. on Fog and Fog Collection, Vancouver, Canada, 109–112.

    • Search Google Scholar
    • Export Citation
  • Daum, P. H., Kelly T. J. , Schwartz S. E. , and Newman L. , 1984a: Measurements of the chemical composition of stratiform clouds. Atmos. Environ, 18 , 26712684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daum, P. H., Schwartz S. E. , and Newman L. , 1984b: Acidic and related constituents in liquid water stratiform clouds. J. Geophys. Res, 89 , 14471458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, R. W., and Charlson R. J. , 1994: Development of a new real-time method for measuring S(IV) in cloud water using a counter-flow virtual impactor. Tellus, 46B , 193204.

    • Search Google Scholar
    • Export Citation
  • Ferziger, J. H., and Peric M. , 1999: Computational Methods for Fluid Dynamics. Springer, 389 pp.

  • Fluent, Inc, 1999: FLUENT user's guide. Vols. 1–4, Fluent, Inc., Lebanon, NH.

  • Freitas, C. J., 1995: Perspective: Selected benchmarks from commercial CFD codes. ASME J. Fluids Eng, 117 , 208218.

  • Gerber, H., Arends B. G. , and Ackerman A. S. , 1994: New microphysics sensor for aircraft use. Atmos. Res, 31 , 235252.

  • Gong, H., Anand N. K. , and McFarland A. R. , 1993: Numerical prediction of the performance of a shrouded probe sampling turbulent flow. Aerosol Sci. Technol, 19 , 294304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, W. D., and Boysan F. , 1996: Computational fluid dynamics (CFD) and empirical modeling of the performance of a number of cyclone samplers. J. Aerosol Sci, 27 , 281304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., and Hobbs P. V. , 1981: Cloud water chemistry and the production of sulfate in clouds. Atmos. Environ, 15 , 15971604.

  • Hegg, D. A., and Hobbs P. V. , 1988: Comparisons of sulfate and nitrate production in clouds on the mid-Atlantic and Pacific Northwest coasts of the United States. J. Atmos. Chem, 7 , 325333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., Hobbs P. V. , and Radke L. F. , 1984a: Measurements of the scavenging of sulfate and nitrate in clouds. Atmos. Environ, 18 , 19391946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., Radke L. F. , and Hobbs P. V. , 1984b: Measurements of transformations in the physical and chemical properties of clouds associated with onshore flow in Washington State. J. Climate Appl. Meteor, 23 , 979984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillamo, R. E., and Kauppinen E. I. , 1991: On the performance of the Berner low pressure impactor. Aerosol Sci. Technol, 14 , 3347.

  • Horlock, J. H., 1966: Axial Flow Turbines—Fluid Mechanics and Thermodynamics. Butterworth, 275 pp.

  • Huebert, B. J., and Baumgardner D. , 1985: A preliminary evaluation of the Mohnen slotted-rod cloud water collector. Atmos. Environ, 19 , 843846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huebert, B. J., Vanbramer S. , and Tschudy K. L. , 1988: Liquid cloudwater collection using modified Mohnen slotted rods. J. Atmos. Chem, 6 , 251263.

  • Isaac, G. A., and Daum P. H. , 1987: A winter study of air, cloud and precipitation chemistry in Ontario, Canada. Atmos. Environ, 21 , 15871600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., Leaitch W. R. , and Strapp J. W. , 1990: The vertical distribution of aerosols and acid related compounds in air and cloudwater. Atmos. Environ, 24A , 30333046.

    • Search Google Scholar
    • Export Citation
  • Jaeschke, W., and Gunther A. , 2001: Chemical composition of size segregated cloud drops collected with an airborne two stage impactor. Proc. Second Int. Conf. on Fog and Fog Collection, St. John's, Newfoundland, Canada, 65–68.

    • Search Google Scholar
    • Export Citation
  • Jiusto, J. E., 1967: Aerosol and cloud microphysics measurements in Hawaii. Tellus, 19 , 359368.

  • Jurcik, B., and Wang H. C. , 1995: On the shape of impactor efficiency curves. J. Aerosol Sci, 26 , 11391147.

  • Kelly, T. J., Daum P. H. , and Schwartz S. E. , 1985: Measurements of peroxides in cloudwater and rain. J. Geophys. Res, 90 , 78617871.

  • Khemani, L. T., Sharma S. K. , Murty A. S. R. , and Ramana Murty Bh V. , 1982: A simple gadget for collection of cloud/rain water from aircraft. Preprints, Conf. on Cloud Physics, Chicago, IL, Amer. Meteor. Soc., 303–305.

    • Search Google Scholar
    • Export Citation
  • Khemani, L. T., Momin G. A. , Naik M. S. , Prakasa Rao P. S. , Safai P. D. , and Murty A. S. R. , 1987: Influence of alkaline particulates on pH of cloud and rain water in India. Atmos. Environ, 21 , 11371145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y. J., and Boatman J. F. , 1992: The collection efficiency of a modified Mohnen slotted-rod cloud water collector in summer clouds. J. Atmos. Oceanic Technol, 9 , 3541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laj, P., and Coauthors, 1998: The size dependent composition of fog droplets. Contrib. Atmos. Phys, 71 , 115130.

  • Laucks, M. L., and Twohy C. H. , 1998: Size-dependent collection efficiency of an airborne counterflow virtual impactor. Aerosol Sci. Technol, 28 , 4061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Launder, B. E., and Spalding D. B. , 1974: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng, 3 , 269289.

  • Leaitch, W. R., Strapp J. W. , and Isaac G. A. , 1986a: Cloud droplet nucleation and cloud scavenging of aerosol sulphate in polluted atmospheres. Tellus, 38B , 328344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaitch, W. R., Strapp J. W. , Wiebe H. A. , Anlauf K. G. , and Isaac G. A. , 1986b: Chemical and microphysical studies of nonprecipitating summer cloud in Ontario, Canada. J. Geophys. Res, 92 , 1182111831.

    • Search Google Scholar
    • Export Citation
  • Leaitch, W. R., Isaac G. A. , Strapp J. W. , Banic C. M. , and Wiebe H. A. , 1992: The relationship between cloud droplet number concentrations and anthropogenic pollution: Observations and climatic implications. J. Geophys. Res, 97 , 24632474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaitch, W. R., and Coauthors, 1996: Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: Factors controlling cloud drop number concentrations. J. Geophys. Res, 101 , 2912329135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, H-C., Tanner P. A. , Huang M-Y. , Shen Z-L. , and Wu Y-X. , 1997: The acidification process under the cloud in southwest China: Observation results and simulation. Atmos. Environ, 31 , 851861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and Coauthors, 1988: Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) experiment. Bull. Amer. Meteor. Soc, 69 , 10581066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., 1979: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng, 19 , 5998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P. S. K., Leaitch W. R. , Macdonald A. M. , Isaac G. A. , Strapp J. W. , and Wiebe H. A. , 1993: Sulphate production in summer cloud over Ontario, Canada. Tellus, 45B , 368389.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., Anlauf K. G. , Banic C. M. , Leaitch W. R. , and Wiebe H. A. , 1995: Airborne measurements of aqueous and gaseous hydrogen peroxide during spring and summer in Ontario, Canada. J. Geophys. Res, 100 , 72537262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marple, V. A., Rubow K. L. , Turner W. , and Spengler J. D. , 1987: Low flow rate sharp cut impactors for indoor air sampling: Design and calibration. J. Air Pollut. Control Assoc, 37 , 13031307.

    • Search Google Scholar
    • Export Citation
  • Marple, V. A., Olson B. A. , and Miller N. C. , 1995: A low-loss cascade impactor with stage collection cups: Calibration and pharmaceutical inhaler applications. Aerosol Sci. Technol, 22 , 124134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maser, R., and Jaeschke W. , 1992: Study of cloud water chemistry— New instrumentation for aircraft measurements. Nucleation and Atmospheric Aerosols, N. Fukuta and P. E. Wagner, Eds., A. Deepak, 497–500.

    • Search Google Scholar
    • Export Citation
  • Maser, R., Franke H. , Preiss M. , and Jaeschke W. , 1994: Methods provided and applied in a research aircraft for the study of cloud physics and chemistry. Beitr. Phys. Atmos, 67 , 321334.

    • Search Google Scholar
    • Export Citation
  • McFarland, A. R., Gong H. , Muyshondt A. , Wente W. A. , and Anand N. K. , 1997: Aerosol deposition in bends with turbulent flow. Environ. Sci. Technol, 31 , 33713377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohnen, V. A., 1980: Cloud water collection from aircraft. Atmos. Technol, 12 , 2025.

  • Mundo, C. H. R., Sommerfield M. , and Tropea C. , 1995: Droplet-wall collisions: Experimental studies of the deformation and breakup process. Int. J. Multiphase Flow, 21 , 151173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munson, B. R., Young D. F. , and Okiishi T. H. , 1990: Fundamentals of Fluid Mechanics. John Wiley and Sons, 843 pp.

  • Muyshondt, A., McFarland A. R. , and Anand N. K. , 1996: Deposition of aerosol particles in contraction fittings. Aerosol Sci. Technol, 24 , 205216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, K. B., Noone K. J. , Heintzenberg J. , Ström J. , and Ogren J. A. , 1993: In situ observations of cirrus cloud microphysical properties using the counterflow virtual impactor. J. Atmos. Oceanic Technol, 10 , 294303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogren, J. A., Heintzenberg J. , and Charlson R. J. , 1985: In-situ sampling of clouds with a droplet to aerosol converter. Geophys. Res. Lett, 12 , 121124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parungo, F., Nagamoto C. , Nolt I. , Dias M. , and Nickerson E. , 1982: Chemical analysis of cloud water collected over Hawaii. J. Geophys. Res, 87 , 88058810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patankar, S. V., 1980: Numerical Heat Transfer and Fluid Flow. Hemisphere, 197 pp.

  • Petrenchuk, O. P., 1973: Estimation of condensation nuclei chemical composition from the results of cloud water analysis. Proc. Eighth Int. Conf. on Nucleation, Leningrad, U.S.S.R., U.S.S.R. Hydrometeorological Service, 445–449.

    • Search Google Scholar
    • Export Citation
  • Petrenchuk, O. P., and Drozdova V. M. , 1966: On the chemical composition of cloud water. Tellus, 18 , 280286.

  • Range, K., and Feuillebois F. , 1998: Influence of surface roughness on liquid drop impact. J. Colloid Interface Sci, 203 , 1630.

  • Rao, X., and Collett J. L. Jr., 1995: Behavior of S(IV) and formaldehyde in a chemically heterogeneous cloud. Environ. Sci. Technol, 29 , 10231031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, X., and Collett J. L. Jr., 1998: The drop size-dependence of iron and manganese concentrations in clouds and fogs: Implications for sulfate production. J. Atmos. Chem, 30 , 273289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rein, M., 1993: Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res, 12 , 6193.

  • Richards, L. W., 1995: Airborne chemical measurements in nighttime stratus clouds in the Los Angeles Basin. Atmos. Environ, 29 , 2746.

  • Richards, L. W., Anderson J. A. , Blumenthal D. L. , McDonald J. A. , Kok G. L. , and Lazrus A. L. , 1983: Hydrogen peroxide and sulfur (IV) in Los Angeles cloud water. Atmos. Environ, 17 , 911914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schell, D., and Coauthors, 1997: The size-dependent chemical composition of cloud droplets. Atmos. Environ, 31 , 25612576.

  • Scott, W. D., 1978: The pH of cloud water and the production of sulfate. Atmos. Environ, 12 , 917921.

  • Scott, W. D., and Laulainen N. S. , 1979: On the concentration of sulfate in precipitation. J. Appl. Meteor, 18 , 138147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and Pandis S. N. , 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley-Interscience, 1326 pp.

    • Search Google Scholar
    • Export Citation
  • Shirolkar, J. S., Coimbra C. F. M. , and McQuay M. Q. , 1996: Fundamental aspects of modeling turbulent particle dispersion in dilute flows. Prog. Energy Combust. Sci, 22 , 262399.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc, 84 , 579593.

  • Stow, C. D., and Hadfield M. G. , 1981: An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. Roy. Soc. London, 373A , 419441.

    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., and Coauthors, 1988: Winter cloud water and air composition in central Ontario. J. Geophys. Res, 93 , 37603772.

  • Straub, D. J., and Collett J. L. Jr., 1999: Numerical and experimental performance evaluation of two multi-stage cloud collectors. Department of Atmospheric Science Rep. 676, Colorado State University, Fort Collins, CO, 145 pp.

    • Search Google Scholar
    • Export Citation
  • Straub, D. J., and Collett J. L. Jr., 2001: Numerical and experimental performance evaluation of the 3-stage FROSTY supercooled cloud collector. Aerosol Sci. Technol, 34 , 247261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, D. J., and Collett J. L. Jr., 2002a: Development of a multi-stage cloud water collector: Part 2 Numerical and experimental calibration. Atmos. Environ, 36 , 4556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, D. J., and Collett J. L. Jr., 2002b: Design and testing of a new aircraft-based cloud water sampling system. Department of Atmospheric Science Rep. 729, Colorado State University, Fort Collins, CO, 261 pp.

    • Search Google Scholar
    • Export Citation
  • Strom, J., Heintzenberg J. , Noone K. J. , Noone K. B. , Ogren J. A. , Albers F. , and Quante M. , 1994: Small crystals in cirriform clouds: A case study of residual size distribution, cloud water content, and related cloud properties. Atmos. Res, 32 , 125141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swanson, P. D., Muzzio F. J. , Annapragada A. , and Abjei A. , 1996: Numerical analysis of motion and deposition of particles in cascade impactors. Int. J. Pharm, 142 , 3351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanner, R. L., 1987: Chemical instrumentation of atmospheric wet deposition processes. The Chemistry of Acid Rain, R. W. Johnson et al., Eds., American Chemical Society, 289–302.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., Clark A. D. , Warren S. G. , Radke L. F. , and Charlson R. J. , 1989: Light-absorbing material extracted from cloud droplets and its effect on cloud albedo. J. Geophys. Res, 94 , 86238631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., Schanot A. J. , and Cooper W. A. , 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol, 14 , 197202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, N. P., 1989: The Anderson impactor: Calibration, wall losses and numerical simulation. J. Aerosol Sci, 20 , 6790.

  • Vong, R. J., Baker B. M. , Brechtel F. J. , Collier R. T. , Harris J. M. , Kowalski A. S. , McDonald N. C. , and McInnes L. M. , 1997: Ionic and trace element composition of cloud water collected on the Olympic Peninsula of Washington State. Atmos. Environ, 31 , 19912001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1949: A capillary collector for measuring the deposition of water drops on a surface moving through clouds. Rev. Sci. Instrum, 20 , 110114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, P. T., Moore M. J. , and Webb A. H. , 1983: A separator for obtaining samples of cloud water in aircraft. Atmos. Environ, 17 , 10831091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, K., Ishizaka Y. , and Takenaka C. , 2001: Chemical characteristics of cloud water over the Japan Sea and the northwestern Pacific Ocean near the central part of Japan: Airborne measurements. Atmos. Environ, 35 , 645655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., Garrett T. J. , and Strapp J. W. , 2002: Wind tunnel tests of the airborne PVM-100A response to large droplets. J. Atmos. Oceanic Technol, 19 , 15771584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. G., and Korakianitis T. , 1998: The Design of High-Efficiency Turbomachinery and Gas Turbines. Prentice Hall, 593 pp.

  • Winters, W., Hogan A. , Mohnen V. , and Barnard S. , 1979: ASRC airborne cloud water collection system. ASRC-SUNYA Publ. 728, Atmospheric Sciences Research Center, State University of New York at Albany, Albany, NY.

    • Search Google Scholar
    • Export Citation
  • Woodcock, A. H., 1952: Atmospheric salt particles and raindrops. J. Meteor, 9 , 200212.

  • Woodcock, A. H., and Spencer A. T. , 1957: An airborne flame photometer and its use in the scanning of marine atmospheres for sea-salt particles. J. Meteor, 14 , 437447.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 2 2 2

An Axial-Flow Cyclone for Aircraft-Based Cloud Water Sampling

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Restricted access

Abstract

A new aircraft-based cloud water collection system has been developed to provide samples of cloud water for chemical analysis. The collection system makes use of centrifugal separation in an axial-flow cyclone to remove cloud drops from the airstream. An automated sample storage system allows up to seven independent samples to be obtained during a single research flight. The entire collection system is housed in a Particle Measurement Systems (PMS) canister to permit the collector to be used on a range of research aircraft without extensive modification to the collector or the aircraft structure. Computational fluid dynamics (CFD) analysis was used extensively throughout the development of the new collector for component design and to predict internal flow dynamics. CFD-based cloud drop trajectory simulations provided an estimate of collection efficiency as a function of drop size. Based on the numerical modeling, the 50% cut diameter was predicted to be 8 μm. Through a quantitative laboratory calibration using fluorescein-tagged monodisperse drops, CFD predictions of drop deposition patterns in the interior of the axial-flow cyclone were verified. The numerical and experimental evaluations were performed to ensure that the population of collected cloud drops is well characterized. Initial flight testing of the system occurred during the Dynamics and Chemistry of Marine Stratocumulus, Phase II (DYCOMS-II) field project in July 2001. Although the major components of the prototype collection system operated as expected during flight testing, sample collection rates were lower than expected because of the inefficient removal and storage of cloud water collected in the axial-flow cyclone. Actual sample collection rates ranged between 0.1 and 1.2 mL min−1.

Current affiliation: Department of Geological and Environmental Science, Susquehanna University, Selinsgrove, Pennsylvania

Corresponding author address: Dr. Jeffrey L. Collett Jr., Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: collett@lamar.colostate.edu

Abstract

A new aircraft-based cloud water collection system has been developed to provide samples of cloud water for chemical analysis. The collection system makes use of centrifugal separation in an axial-flow cyclone to remove cloud drops from the airstream. An automated sample storage system allows up to seven independent samples to be obtained during a single research flight. The entire collection system is housed in a Particle Measurement Systems (PMS) canister to permit the collector to be used on a range of research aircraft without extensive modification to the collector or the aircraft structure. Computational fluid dynamics (CFD) analysis was used extensively throughout the development of the new collector for component design and to predict internal flow dynamics. CFD-based cloud drop trajectory simulations provided an estimate of collection efficiency as a function of drop size. Based on the numerical modeling, the 50% cut diameter was predicted to be 8 μm. Through a quantitative laboratory calibration using fluorescein-tagged monodisperse drops, CFD predictions of drop deposition patterns in the interior of the axial-flow cyclone were verified. The numerical and experimental evaluations were performed to ensure that the population of collected cloud drops is well characterized. Initial flight testing of the system occurred during the Dynamics and Chemistry of Marine Stratocumulus, Phase II (DYCOMS-II) field project in July 2001. Although the major components of the prototype collection system operated as expected during flight testing, sample collection rates were lower than expected because of the inefficient removal and storage of cloud water collected in the axial-flow cyclone. Actual sample collection rates ranged between 0.1 and 1.2 mL min−1.

Current affiliation: Department of Geological and Environmental Science, Susquehanna University, Selinsgrove, Pennsylvania

Corresponding author address: Dr. Jeffrey L. Collett Jr., Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: collett@lamar.colostate.edu

Save