Autonomous Measurements of Sea Surface Temperature Using In Situ Thermal Infrared Data

Raquel Niclòs Departament de Termodinàmica, Facultat de Física, Universitat de València, Burjassot, Valencia, Spain

Search for other papers by Raquel Niclòs in
Current site
Google Scholar
PubMed
Close
,
Vicente Caselles Departament de Termodinàmica, Facultat de Física, Universitat de València, Burjassot, Valencia, Spain

Search for other papers by Vicente Caselles in
Current site
Google Scholar
PubMed
Close
,
César Coll Departament de Termodinàmica, Facultat de Física, Universitat de València, Burjassot, Valencia, Spain

Search for other papers by César Coll in
Current site
Google Scholar
PubMed
Close
,
Enric Valor Departament de Termodinàmica, Facultat de Física, Universitat de València, Burjassot, Valencia, Spain

Search for other papers by Enric Valor in
Current site
Google Scholar
PubMed
Close
, and
Eva Rubio Remote Sensing and GIS Unit, Institute of Regional Development, University of Castilla-La Mancha, Albacete, Spain

Search for other papers by Eva Rubio in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In situ and autonomous measurements of sea surface temperature (SST) have been performed with a thermal infrared radiometer mounted on a fixed oil rig. The accuracy limit was established at ±0.3 K for these SST measurements in order to meet the requirements of the Tropical Ocean Global Atmosphere (TOGA) program for global climate research and the Soil Moisture and Ocean Salinity (SMOS) mission for salinity retrieval. With this aim, the optimal observation angle and spectral channel for SST measurements have been identified. Then, a methodology has been developed for the radiometer calibration and the emissivity correction, including the reflection of the downwelling sky radiance, which was directly measured simultaneously to the sea surface observation. The effect of the atmospheric path between the sea surface and the sensor has been also studied and found negligible for the particular viewing conditions. A sensitivity analysis of the proposed methodology has shown a precision of ±0.15 K in the retrieved SST. Finally, the measured SSTs have been validated with coincident buoy temperatures, resulting in an average difference of 0.0 K and a standard deviation of ±0.2 K.

Corresponding author address: Raquel Niclòs, Departament de Termodinàmica, Facultat de Física, Universitat de València, 50 Dr. Moliner, 46100 Burjassot, València, Spain. Email: Raquel.Niclos@uv.es

Abstract

In situ and autonomous measurements of sea surface temperature (SST) have been performed with a thermal infrared radiometer mounted on a fixed oil rig. The accuracy limit was established at ±0.3 K for these SST measurements in order to meet the requirements of the Tropical Ocean Global Atmosphere (TOGA) program for global climate research and the Soil Moisture and Ocean Salinity (SMOS) mission for salinity retrieval. With this aim, the optimal observation angle and spectral channel for SST measurements have been identified. Then, a methodology has been developed for the radiometer calibration and the emissivity correction, including the reflection of the downwelling sky radiance, which was directly measured simultaneously to the sea surface observation. The effect of the atmospheric path between the sea surface and the sensor has been also studied and found negligible for the particular viewing conditions. A sensitivity analysis of the proposed methodology has shown a precision of ±0.15 K in the retrieved SST. Finally, the measured SSTs have been validated with coincident buoy temperatures, resulting in an average difference of 0.0 K and a standard deviation of ±0.2 K.

Corresponding author address: Raquel Niclòs, Departament de Termodinàmica, Facultat de Física, Universitat de València, 50 Dr. Moliner, 46100 Burjassot, València, Spain. Email: Raquel.Niclos@uv.es

Save
  • Barton, I. J., 1985: Transmission model and ground-truth investigation of satellite-derived sea surface temperatures. J. Climate Appl. Meteor, 24 , 508516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, I. J., 1992: Satellite-derived sea surface temperatures—A comparison between operational, theoretical and experimental algorithms. J. Appl. Meteor, 31 , 432442.

    • Search Google Scholar
    • Export Citation
  • Barton, I. J., 2001: Interpretation of satellite-derived sea surface temperatures. Adv. Space Res, 28 , 165170.

  • Berger, M., and Coauthors, 2002: Measuring ocean salinity with ESA's SMOS mission. ESA Bull, 111 , 113121.

  • Berk, A., Anderson G. P. , Acharya P. K. , Chetwynd J. H. , Bernstein L. S. , Shettle E. P. , Matthew M. W. , and Adler-Golden S. M. , 1999: MODTRAN 4 user's manual. Air Force Research Laboratory, Space Vehicles Directorate, Air Force Material Command, Hanscom AFB, MA, 95 pp.

    • Search Google Scholar
    • Export Citation
  • Budeus, G., and Schneider W. , 1998: In-situ temperature calibration: A remark on instruments and methods. International WOCE Newsletter, No. 30, WOCE International Project Office, Southampton, United Kingdom, 16–18.

    • Search Google Scholar
    • Export Citation
  • Camps, A., and Coauthors, 2002: Sea surface emissivity observations at L-band: First results of the Wind and Salinity Experiment WISE-2000. IEEE Trans. Geosci. Remote Sens, 40 , 21172130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C., and Munk W. , 1955: Some problems in optical oceanography. J. Mar. Res, 14 , 6378.

  • Donlon, C. J., and Nightingale T. J. , 2000: Effect of atmospheric radiance errors in radiometric sea-surface skin temperature measurements. Appl. Opt, 39 , 23872392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and Coauthors, 1998: Solid-state radiometer measurements of sea surface skin temperature. J. Atmos. Oceanic Technol, 15 , 775787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Sheasby T. , Turner J. , Robinson I. S. , and Emery W. J. , 1999: Implications of the oceanic thermal skin temperature derivation at high wind speed. Geophys. Res. Lett, 26 , 25052508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Minnet P. J. , Gentemann C. , Nightingale T. J. , Barton I. J. , Ward B. , and Murray M. J. , 2002: Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15 , 353369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Font, J., and Coauthors, 2003: Oceanographic conditions during the Wind and Salinity Experiment 2000 and 2001, NW Mediterranean Sea. Proc. Campaign Workshop. First results of WISE/ EuroSTARRS/LOSAC, Toulouse, France, ESA SP-525, 51–59.

    • Search Google Scholar
    • Export Citation
  • Hagan, D., Rogers D. , Friehe C. , Weller R. , and Walsh E. , 1997: Aircraft observations of sea surface temperature variability in the tropical Pacific. J. Geophys. Res, 102 (C7) 1573315747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, A. R., Brown S. J. , and Mason I. M. , 1994: The effect of wind speed on sea surface temperature retrieval from space. Geophys. Res. Lett, 21 , 17151718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jessup, A. T., and Hesany V. , 1996: Modulation of ocean skin temperature by swell waves. J. Geophys. Res, 101 (C3) 65016511.

  • Kerr, Y. H., Waldteufel P. , and Berger M. , 2001: Mission Objectives and Scientific Requirements of the Soil Moisture and Ocean Salinity (SMOS) Mission. ESA, 44 pp.

    • Search Google Scholar
    • Export Citation
  • Legrand, M., Pietras C. , Brogniez G. , Haeffelin M. , Abuhassan N. K. , and Sicard M. , 2000: A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part 1: Characterization of the instrument. J. Atmos. Oceanic Technol, 17 , 12031214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuda, K., Takashima T. , and Takayama Y. , 1988: Emissivity of pure sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ, 48 , 302308.

    • Search Google Scholar
    • Export Citation
  • Murray, M. J., Allen M. R. , Merchant C. J. , Harris A. R. , and Donlon C. J. , 2000: Direct observations of skin-bulk SST variability. Geophys. Res. Lett, 27 , 11711174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., Smith W. L. , and Huang B. , 2001: Quasi-specular model for calculating the reflection of atmospheric-emitted infrared radiation from a rough water surface. Appl. Opt, 40 , 13431353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rees, W. G., and James S. P. , 1992: Angular variation of the infrared emissivity of ice and water sea surfaces. Int. J. Remote Sens, 13 , 28732886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, I. S., Wells N. C. , and Charnock H. , 1984: The sea surface thermal boundary layer and its relevance to the measurement of surface temperature by airborne and space borne radiometers. Int. J. Remote Sens, 5 , 1946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, P., 1967: The temperature at the ocean–air interface. J. Atmos. Sci, 24 , 267273.

  • Schluessel, P., Shin H-Y. , Emery W. J. , and Grassl H. , 1987: Comparison of satellite-derived sea surface temperatures with in situ skin measurements. J. Geophys. Res, 92 (C3) 28592874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schluessel, P., Emery W. J. , Grassl H. , and Mammen T. , 1990: On the bulk- skin temperature difference and its impact on satellite remote sensing of sea surface temperature. J. Geophys. Res, 95 (C8) 1334113356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sicard, M., Spyak P. R. , Brogniez G. , Legrand M. , Abuhassan N. K. , Pietras C. , and Buis J. P. , 1999: Thermal infrared field radiometer for vicarious cross-calibration: Characterization and comparisons with other field instruments. Opt. Eng, 38 , 345356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sidran, M., 1981: Broadband reflectance and emissivity of specular and rough water surfaces. Appl. Opt, 20 , 31763183.

  • Smith, W. L., and Coauthors, 1996: Observations of the infrared radiative properties of the ocean—Implications for the measurement of sea surface temperature via satellite remote sensing. Bull. Amer. Meteor. Soc, 77 , 4150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobrino, J. A., and Cuenca J. , 1999: Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements. Appl. Opt, 38 , 39313936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swift, C. T., and McIntosh R. E. , 1983: Considerations for microwave remote sensing of ocean-surface salinity. IEEE Trans. Geosci. Remote Sens, 21 , 480491.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., Clayson C. A. , and Curry J. A. , 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9 , 17121730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., Emery W. J. , Kantha L. H. , and Schlüssel P. , 1996: The behavior of the bulk-skin sea surface temperature difference under varying wind speed and heat flux. J. Phys. Oceanogr, 26 , 19691988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., and Smith W. L. , 1997: Emissivity of rough sea surface for 8–13 μm: Modelling and verification. Appl. Opt, 36 , 26092619.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 450 172 33
PDF Downloads 135 40 5