• Ansmann, A., Wandinger U. , Riebesell M. , Weitkamp C. , and Michaelis W. , 1992: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt, 31 , 71137131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. U.S. Government Printing Office, 227 pp.

  • Derr, V. E., 1980: Estimation of the extinction coefficient of clouds from multiwavelength lidar backscatter measurements. Appl. Opt, 19 , 23102314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 1998: Practical model for the calculation of multiply scattered lidar returns. Appl. Opt, 37 , 24642472.

  • Eloranta, E. W., and Shipley S. T. , 1982: A solution for multiple scattering. Atmospheric Aerosols—Their Formation, Optical Properties, and Effects, A. Deepak, Ed., Spectrum, 227–239.

    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., Herman B. M. , and Reagan J. A. , 1972: Determination of aerosol height distributions by lidar. J. Appl. Meteor, 11 , 482489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, N. I., and Illingworth A. J. , 1997: The retrieval of stratocumulus properties by ground-based radar. J. Appl. Meteor, 36 , 485492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., Tan J. , and Thurai M. , 1994: Technique for calibration of meteorological radars using differential phase. Electron. Lett, 30 , 166167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., and Eloranta E. W. , 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cloud optical properties determined by High Spectral Resolution Lidar. Mon. Wea. Rev, 118 , 23442355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hale, G. M., and Querry M. R. , 1973: Optical constants of water in the 200 nm to 200 μm wavelength region. Appl. Opt, 12 , 555563.

  • Heymsfield, A. J., Miloshevich L. M. , Slingo A. , Sassen K. , and Starr D. O. , 1991: An observational and theoretical study of highly supercooled altocumulus. J. Atmos. Sci, 48 , 923945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Francis P. N. , Flentje H. , Illingworth A. J. , Quante M. , and Pelon J. , 2003a: Characteristics of mixed phase clouds. Part I: Lidar, radar and aircraft observations from CLARE '98. Quart. J. Roy. Meteor. Soc, 129 , 20892116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Illingworth A. J. , Poiares B́aptista J. P. V. , and O'Connor E. J. , 2003b: Characteristics of mixed phase clouds. Part II: A climatology from ground-based lidar. Quart. J. Roy. Meteor. Soc, 129 , 21172134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kou, L., Labrie D. , and Chylek P. , 1993: Refractive indices of water and ice in the 0.65–2.5 μm spectral range. Appl. Opt, 32 , 35313540.

  • Kunkel, K. E., and Weinmann J. A. , 1976: Monte Carlo analysis of multiple scattering on light pulses reflected by turbid atmospheres. J. Atmos. Sci, 33 , 17631771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beitrage zur Optik trüber Medien speziell kolloidaler Metallösungen. Ann. Phys, 25 , 377445.

  • Miles, N. L., Verlinde J. , and Clothiaux E. E. , 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci, 57 , 295311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinnick, R. G., Jennings S. G. , Chýlek P. , Ham C. , and Grandy W. T. Jr., 1983: Backscatter and extinction in water clouds. J. Geophys. Res, 88 (C11) 67876796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci, 30 , 11911204.

  • Platt, C. M. R., 1979: Remote sounding of high cloud. Part I: Calculations of the visible and infrared optical properties from lidar and radiometer measurements. J. Appl. Meteor, 18 , 11301143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1981: Remote sounding of high clouds. Part III: Monte Carlo calculations of multiple-scattered lidar returns. J. Atmos. Sci, 38 , 156167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Querry, M. R., Wieliczka D. M. , and Segelstein D. J. , 1991: Water (H2O). Handbook of Optical Constants of Solids II, E. D. Palik, Ed., Academic Press, 1059–1077.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Starr D. O. , and Uttal T. , 1989: Mesoscale and microscale structure of cirrus clouds: Three case studies. J. Atmos. Sci, 46 , 371396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., Boers R. , and Hart W. D. , 1989: Cloud top liquid water from lidar observations of marine stratocumulus. J. Appl. Meteor, 28 , 8190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., Couch R. H. , and McCormick M. P. , 1996: An overview of LITE: NASA's lidar in-space technology experiment. Proc. IEEE, 84 , 164180.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 9 9 9

A Technique for Autocalibration of Cloud Lidar

View More View Less
  • 1 Department of Meteorology, University of Reading, Reading, United Kingdom
Restricted access

Abstract

In this paper a technique for autocalibration of a cloud lidar is demonstrated. It is shown that the lidar extinction-to-backscatter ratio derived from integrated backscatter for stratocumulus is, in the absence of drizzle, constrained to a theoretical value of 18.8 ± 0.8 sr at a wavelength of 905 nm. The lidar can be calibrated by scaling the backscatter signal so that the observed lidar ratio matches the theoretical value when suitable conditions of stratocumulus are available. For a beam divergence of 1–1.5 mrad, multiple scattering introduces an uncertainty of about 10% into the calibration and for a narrow-beam ground-based lidar, with negligible multiple scattering, calibration may be possible to better than 5%. Some examples of the mean lidar ratio of supercooled liquid water layers and ice clouds inferred using this technique are also shown.

Corresponding author address: Ewan J. O'Connor, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: e.j.oconnor@reading.ac.uk

Abstract

In this paper a technique for autocalibration of a cloud lidar is demonstrated. It is shown that the lidar extinction-to-backscatter ratio derived from integrated backscatter for stratocumulus is, in the absence of drizzle, constrained to a theoretical value of 18.8 ± 0.8 sr at a wavelength of 905 nm. The lidar can be calibrated by scaling the backscatter signal so that the observed lidar ratio matches the theoretical value when suitable conditions of stratocumulus are available. For a beam divergence of 1–1.5 mrad, multiple scattering introduces an uncertainty of about 10% into the calibration and for a narrow-beam ground-based lidar, with negligible multiple scattering, calibration may be possible to better than 5%. Some examples of the mean lidar ratio of supercooled liquid water layers and ice clouds inferred using this technique are also shown.

Corresponding author address: Ewan J. O'Connor, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: e.j.oconnor@reading.ac.uk

Save