• Abel, P., Ellis P. , Houghton J. , Peckman G. , Rogers C. , Smith S. , and Williamson E. , 1970: Remote sounding of atmospheric temperature from satellites II. The selective chopper radiometer for Nimbus D. Proc. Roy. Soc. London, 320A , 3555.

    • Search Google Scholar
    • Export Citation
  • Aoki, T., Fukabori M. , and Aoki T. , 1993: Trace gas remote sounding from near IR sun glint observations with tunable etalons. High Spectral Resolution Infrared Remote Sounding for Earth's Weather and Climate Studies, A. Chedin, M. T. Chedin, and N. A. Scott, Eds., NATO ASI Series, Vol. 19, Springer, 309–322.

    • Search Google Scholar
    • Export Citation
  • Ciais, P., Tans P. P. , Trolier M. , White J. W. C. , and Francey R. J. , 1995: A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 269 , 10981102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, T. J., Tans P. P. , Waterman L. S. , and Thoning K. W. , 1994: Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res, 99 , 2283122855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denning, A. S., Fung I. Y. , and Randall D. , 1995: Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature, 376 , 240242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drummond, J. R., Houghton J. , Peskett G. , Rogers C. , Wale M. , Whitney J. , and Williamson E. , 1980: The stratospheric and mesospheric sounder on Nimbus 7. Philos. Trans. Roy. Soc. London, 296A , 219241.

    • Search Google Scholar
    • Export Citation
  • Drummond, J. R., Brasseur G. P. , Davis G. R. , Gille J. C. , McConnell J. C. , Peskett G. P. , Reichle H. G. Jr., and Roulet N. , 1993: MOPITT mission description documento Dept. of Physics, University of Toronto, Toronto, ON, Canada, 130 pp. [Available from Dept. of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; also available online at http://www.atmosp.physics.utoronto.ca/ MOPITT/mdd_93/index.html.].

    • Search Google Scholar
    • Export Citation
  • Ellis, P., and Coauthors, 1973: Remote sounding of atmospheric temperature from satellites IV. The selective chopper radiometer for Nimbus 5. Proc. Roy. Soc. London, 334 , 149170.

    • Search Google Scholar
    • Export Citation
  • Fan, S., Gloor M. , Mahlman J. , Pacala S. , Sarmiento J. , Takahashi T. , and Tans P. , 1998: A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 282 , 442446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francey, R. J., Tans P. P. , Allison C. E. , Enting I. G. , White J. W. C. , and Trolier M. , 1995: Changes in oceanic and terrestrial carbon uptake since 1982. Nature, 373 , 326330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Jenkins G. J. , and Ephraums J. J. , Eds.,. 1990: Scientific Assessment of Climate Change—Report of Working Group I. Cambridge University Press, 365 pp.

    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., Bacastow R. B. , Carter A. F. , Piper S. C. , Whorf T. P. , Heimann M. , Mook W. G. , and Roeloffzen H. , 1989: A three-dimensional model of atmospheric CO2 transport based on observed winds, 1, Analysis of observational data. Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr., No. 55, Amer. Geophys. Union, 165–236.

    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., Chin J. F. S. , and Whorf T. P. , 1996: Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382 , 146149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komhyr, W. D., Gammon R. H. , Harris T. B. , Waterman L. S. , Conway T. J. , Taylor W. R. , and Thoning K. W. , 1985: Global atmospheric CO2 distributions and variations from 1968–1982 NOAA/GMCC CO2 flask sample data. J. Geophys. Res, 90 , 55675596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., Margolis J. , Toon G. , Crisp D. , and Yung Y. , 2002: Spaceborne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: An introductory study. Geophys. Res. Lett.,29, 1716, doi:10.1029/2001GLO14298.

    • Search Google Scholar
    • Export Citation
  • Kuze, A., Nakajima H. , Suzuki M. , and Sasano Y. , 2001: Measurement of greenhouse gases from space with a SWIR FTS. Proc. SPIE, 4485 , 6980.

    • Search Google Scholar
    • Export Citation
  • NOAA/CMDL/CCG, cited 2003: Carbon cycle greenhouse gases. [Available online at http://www.cmdl.noaa.gov/ccgg/.].

  • O'Brien, D. M., and Rayner P. J. , 2002: Global observations of carbon budget, 2, CO2 column from differential absorption of reflected sunlight in the 1.61 μm band of CO2. J. Geophys. Res.,107, 4354, doi:10.1029/2001JD000617.

    • Search Google Scholar
    • Export Citation
  • O'Brien, D. M., Mitchell R. M. , English S. A. , and Da Costa G. A. , 1998: Airborne measurement of air mass from O2 A-band absorption spectra. J. Atmos. Oceanic Technol, 15 , 12721286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. H., 1997: Atmospheric CO2 monitoring from space. Appl. Opt, 36 , 27012712.

  • Randerson, J. T., Thompson M. V. , Conway T. J. , Fung I. Y. , and Field C. B. , 1997: The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem. Cycles, 11 , 535560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, P. J., and O'Brien D. M. , 2001: The utility of remotely sensed CO2 concentration data in the surface source inversions. Geophys. Res. Lett, 28 , 175178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle H. Jr., , and Coauthors, 1986: Middle and upper tropospheric carbon monoxide mixing ratios as measured by a satellite borne remote sensor during November 1981. J. Geophys. Res, 91 , 1086510887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle H. Jr., , and Coauthors, 1990: The distribution of middle tropospheric carbon monoxide during October 1984. J. Geophys. Res, 95 , 98459856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle H. Jr., , and Coauthors, 1999: Space shuttle based global CO measurements during April and October 1994: MAPS instrument, data reduction, and data validation. J. Geophys. Res, 104 , 2144321454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 1998: The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transfer, 60 , 665710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tans, P. P., Fung I. Y. , and Takahashi T. , 1990: Observational constraints on the global atmospheric CO2 budget. Science, 247 , 14311438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, F. W., 1983: Pressure modulator radiometry. Spectrometric Techniques, G. A. Vanasse, Ed., Vol. 3, Academic Press, 137– 197.

  • Tolton, B. T., and Drummond J. , 1999: Measurement of the atmospheric carbon monoxide column with a ground-based length-modulated radiometer. Appl. Opt, 38 , 18971909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolton, B. T., and Plouffe D. , 2001: Sensitivity of radiometric measurements of the atmospheric CO2 column from space. Appl. Opt, 40 , 13051313.

  • Tolton, B. T., Toohey M. , Plouffe D. , Benoit P. , and Yurganov L. , 2001: A concept for the remote sounding measurement of the atmospheric carbon dioxide column from space. Proc. SPIE, 4485 , 99106.

    • Search Google Scholar
    • Export Citation
  • Wofsy, S. C., and Harriss R. C. , 2002: The North American Carbon Program (NACP). Report of the NACP Committee of the U.S. Interagency Carbon Cycle Science Program, U.S. Global Change Research Program, Washington, DC, 56 pp.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., Toon G. C. , Margolis J. S. , and Wennberg P. O. , 2002: Atmospheric CO retrieved from space-based near IR solar spectra. Geophys. Res. Lett.,29, 1339, doi:10.1029/2001GLO14537.

    • Search Google Scholar
    • Export Citation
  • Zimov, S. A., Davidov S. P. , Zimova G. M. , Davidova A. I. , Chapin F. S. III, Chapin M. C. , and Reynolds F. J. , 1999: Contributions of disturbance to increasing seasonal amplitude of atmospheric CO2. Science, 284 , 19731976.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 212 127 3
PDF Downloads 115 82 9

A Concept for a Gas-Filter Correlation Radiometer to Remotely Sense the Atmospheric Carbon Dioxide Column from Space

View More View Less
  • 1 Synodon, Inc., Edmonton, Alberta, Canada
Restricted access

Abstract

Concern about the climatic effects of anthropogenic emissions of CO2 has resulted in a growing need, both scientifically and politically, to monitor atmospheric CO2. The development of a satellite instrument that could measure the global distribution of atmospheric CO2 would greatly improve our understanding of the global carbon cycle and provide a means of monitoring regional sources and sinks. In this paper, the potential of a proposed nadir-viewing, satellite-based remote sounding instrument consisting of gas-filter correlation radiometers (GFCRs) tuned to the 6300-(1.6 μm) and 5000-cm−1 (2 μm) regions to globally measure the atmospheric CO2 column is analyzed. Although the design of such an instrument would present some engineering challenges, the proposed instrument has significant potential. Such an instrument should be able to measure the atmospheric CO2 column to a precision better than 1 ppmv.

Corresponding author address: Dr. Boyd T. Tolton, Synodon, Inc., 6919 Roper Rd., Edmonton, AB T6B 3H9, Canada. Email: boyd.tolton@synodon.com

Abstract

Concern about the climatic effects of anthropogenic emissions of CO2 has resulted in a growing need, both scientifically and politically, to monitor atmospheric CO2. The development of a satellite instrument that could measure the global distribution of atmospheric CO2 would greatly improve our understanding of the global carbon cycle and provide a means of monitoring regional sources and sinks. In this paper, the potential of a proposed nadir-viewing, satellite-based remote sounding instrument consisting of gas-filter correlation radiometers (GFCRs) tuned to the 6300-(1.6 μm) and 5000-cm−1 (2 μm) regions to globally measure the atmospheric CO2 column is analyzed. Although the design of such an instrument would present some engineering challenges, the proposed instrument has significant potential. Such an instrument should be able to measure the atmospheric CO2 column to a precision better than 1 ppmv.

Corresponding author address: Dr. Boyd T. Tolton, Synodon, Inc., 6919 Roper Rd., Edmonton, AB T6B 3H9, Canada. Email: boyd.tolton@synodon.com

Save