Laboratory Studies and Numerical Simulations of Cloud Droplet Formation under Realistic Supersaturation Conditions

F. Stratmann Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by F. Stratmann in
Current site
Google Scholar
PubMed
Close
,
A. Kiselev Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by A. Kiselev in
Current site
Google Scholar
PubMed
Close
,
S. Wurzler Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by S. Wurzler in
Current site
Google Scholar
PubMed
Close
,
M. Wendisch Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by M. Wendisch in
Current site
Google Scholar
PubMed
Close
,
J. Heintzenberg Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by J. Heintzenberg in
Current site
Google Scholar
PubMed
Close
,
R. J. Charlson Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by R. J. Charlson in
Current site
Google Scholar
PubMed
Close
,
K. Diehl Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by K. Diehl in
Current site
Google Scholar
PubMed
Close
,
H. Wex Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by H. Wex in
Current site
Google Scholar
PubMed
Close
, and
S. Schmidt Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by S. Schmidt in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In this paper, a new device is introduced to study the formation and growth of cloud droplets under near-atmospheric supersaturations. The new device, called the Leipzig Aerosol Cloud Interaction Simulator (LACIS), is based on a laminar flow tube. It has been designed to reproduce the thermodynamic conditions of atmospheric clouds as realistically as possible.

A series of experiments have been conducted that prove the definition and stability of the flow field inside the LACIS as well as the stability and reproducibility of the generated droplet size distributions as a function of the applied thermodynamic conditions. Measured droplet size distributions are in good agreement with those determined by a newly developed Eulerian particle–droplet dynamical model.

Further investigations will focus on the influences of latent heat release during vapor condensation on the tube walls and the development of a more suitable optical particle counter for droplet size determination.

Corresponding author address: Dr. F. Stratmann, Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: straddi@tropos.de

Abstract

In this paper, a new device is introduced to study the formation and growth of cloud droplets under near-atmospheric supersaturations. The new device, called the Leipzig Aerosol Cloud Interaction Simulator (LACIS), is based on a laminar flow tube. It has been designed to reproduce the thermodynamic conditions of atmospheric clouds as realistically as possible.

A series of experiments have been conducted that prove the definition and stability of the flow field inside the LACIS as well as the stability and reproducibility of the generated droplet size distributions as a function of the applied thermodynamic conditions. Measured droplet size distributions are in good agreement with those determined by a newly developed Eulerian particle–droplet dynamical model.

Further investigations will focus on the influences of latent heat release during vapor condensation on the tube walls and the development of a more suitable optical particle counter for droplet size determination.

Corresponding author address: Dr. F. Stratmann, Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: straddi@tropos.de

Save
  • Barrett, J. C., and Clement C. F. , 1988: Growth rates for liquid drops. J. Aerosol Sci, 19 , 223242.

  • Bilde, M., and Svenningsson B. , 2003: CCN activation of slightly soluble organics: Importance of small amounts of inorganic salt and particle phase. Tellus, 56B , 93182.

    • Search Google Scholar
    • Export Citation
  • Bird, R., Stewart W. , and Lightfoot E. , 1960: Transport Phenomena. John Wiley, 780 pp.

  • Bohren, C. F., and Huffman D. R. , 1983: Absorption and Scattering of Light by Small Particles. John Wiley, 530 pp.

  • Brenguier, J. L., Bourrianne T. , Coelho A. A. , Isbert J. , Peytavi R. , Trevarin D. , and Wechsler P. , 1998: Improvements of droplet size distribution measurements with the fast-FSSP. J. Atmos. Oceanic Technol, 15 , 10771090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunz, H., Möhler O. , Neumann K-H. , Saathoff H. , Schöck W. , and Schurath U. , 1996: The novel aerosol chamber facility AIDA: Status and first results. Proceedings of the Seventh Symposium on Physicochemical Behavior of Atmospheric Pollutants, B. Larsen, B. Versino, and G. Angeletti, Eds., EUR 17482, 673–677.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., Seinfeld J. S. , Nenes A. , Kulmala M. , Laaksonen A. , and Facchini M. C. , 2001: Reshaping the theory of cloud formation. Science, 292 , 20252026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, P. Y., Charlson R. J. , and Seinfeld J. H. , 1997: Kinetic limitations on droplet formation in clouds. Nature, 390 , 594596.

  • Chuang, P. Y., Nenes A. , Smith J. N. , Flagan R. C. , and Seinfeld J. H. , 2000: Design of a CCN instrument for airborne measurements. J. Atmos. Oceanic Technol, 17 , 10051019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Abbatt J. P. D. , 1999: Deliquescence, efflorescence, and supercooling of ammonium sulfate aerosols at low temperature: Implications for cirrus cloud formation and aerosol phase in the atmosphere. J. Geophys. Res, 104 , 1378113790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., Nowak J. B. , Hu J. H. , and Abbatt J. P. D. , 1997: Infrared spectroscopy of model tropospheric aerosols as a function of relative humidity: Observation of deliqescence and crystallization. J. Geophys. Res, 102 , 1884318850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Rogers D. C. , 1990: Freezing nucleation rates of dilute solution droplets measured between −30° and −40°C in laboratory simulations of natural clouds. J. Atmos. Sci, 47 , 10561064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Baumgardner D. , 1984: Evaluation of the forward scattering spectrometer probe. Part I: Electronic and optical studies. J. Atmos. Oceanic Technol, 1 , 329344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Facchini, M. C., Mircea M. , and Charlson R. J. , 1999: Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature, 401 , 257259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fluent, 2001: FLUENT 6 user's guide. Fluent Inc.

  • Grant, L. O., and Steele R. L. , 1966: The calibration of silver iodide generators. Bull. Amer. Meteor. Soc, 47 , 713717.

  • Hagen, D. E., Schmitt J. , Trueblood M. , Carstens J. , White D. R. , and Alofs D. J. , 1989: Condensation coefficient measurement for water in the UMR cloud simulation chamber. J. Atmos. Sci, 46 , 803816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., and Pruppacher H. R. , 1976: The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci, 33 , 19952006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hindman, E. E., 1989: Formation and optical properties of a warm cloud in a slow-expansion cloud chamber. J. Atmos. Sci, 46 , 36533663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1989: An instantaneous CCN spectrometer. J. Atmos. Oceanic Technol, 6 , 10551065.

  • Hudson, J. G., and Squires P. , 1973: Evaluation of a recording continuous cloud nucleus counter. J. Appl. Meteor, 12 , 175183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y. J., and Boatman J. F. , 1990: Corrections for the effects of particle trajectory and beam intensity profile on the size spectra of atmospheric aerosols measured with a forward scattering spectrometer probe. J. Atmos. Oceanic Technol, 7 , 673680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, E. O., and Whitby K. T. , 1975: Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci, 6 , 443451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulmala, M., Laaksonen A. , Korhonen P. , Vesala T. , Ahonen T. , and Barrett J. C. , 1993: The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation. J. Geophys. Res, 98 , 2294922958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaitch, R., and Megaw W. J. , 1982: The diffusion tube: A cloud condensation nucleus counter for use below 0.3% supersaturation. J. Aerosol Sci, 13 , 297319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahata, P. C., Alofs D. J. , and Sinnarwalla A. M. , 1973: Supersaturation development in a vertical flow thermal diffusion chamber. J. Appl. Meteor, 12 , 13791383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2002: Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys. Discuss, 2 , 14291465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and Klett J. D. , 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 945 pp.

  • Rogers, D. C., 1988: Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos. Res, 22 , 149181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saxena, V. K., and Carstens J. C. , 1971: On the operation of cylindrical thermal diffusion cloud chambers. J. Rech. Atmos., 11– 23.

  • Saxena, V. K., Burford J. N. , and Kassner J. L. Jr., 1970: Operation of a thermal diffusion chamber for measurements on cloud condensation nuclei. J. Atmos. Sci, 27 , 7380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shulman, M. L., Jacobson M. C. , Charlson R. J. , Synovec R. E. , and Young T. E. , 1996: Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets. Geophys. Res. Lett, 23 , 277280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ, 8 , 12511256.

  • Vietti, M. A., and Fastook J. L. , 1975: Water droplet growth in an expansion cloud chamber operating at small supersaturations. J. Rech. Atmos, 4 , 181195.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., Keil A. , and Korolev A. V. , 1996: FSSP characterization with monodisperse water droplets. J. Atmos. Oceanic Technol, 13 , 11521165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilck, M., Stratmann F. , and Whitby E. R. , 2002: A fine particle model for FLUENT: Description and application. Proc. Sixth Int. Aerosol Conf., Taipei, Taiwan, Chinese Association for Aerosol Research in Taiwan/International Aerosol Research Assembly, 1269–1270.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 986 388 77
PDF Downloads 419 102 11