Velocity Error for Coherent Doppler Lidar with Pulse Accumulation

Rod Frehlich Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Rod Frehlich in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The random estimation or instrument error of coherent Doppler lidar velocity estimates with pulse accumulation (multiple lidar shots per velocity estimate) is determined with computer simulations for general conditions. The sampling errors for overlaid lidar tracks and tropospheric wind field conditions are also calculated for space-based operation. These results permit useful engineering analysis based on the total observation error of the velocity measurements.

Corresponding author address: Dr. Rod Frehlich, CIRES, Campus Box 216, University of Colorado, Boulder, CO 80309. Email: rgf@cires.colorado.edu

Abstract

The random estimation or instrument error of coherent Doppler lidar velocity estimates with pulse accumulation (multiple lidar shots per velocity estimate) is determined with computer simulations for general conditions. The sampling errors for overlaid lidar tracks and tropospheric wind field conditions are also calculated for space-based operation. These results permit useful engineering analysis based on the total observation error of the velocity measurements.

Corresponding author address: Dr. Rod Frehlich, CIRES, Campus Box 216, University of Colorado, Boulder, CO 80309. Email: rgf@cires.colorado.edu

Supplementary Materials

    • Supplemental Materials (TXT 53.35 KB)
Save
  • Anderson, J. R., 1991: High performance velocity estimators for coherent laser radars. Sixth Topical Meeting on Coherent Laser Radar: Technology and Applications, Snowmass-at-Aspen, CO, Optical Society of America, 216–218.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan, 75 , 111130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, W. E., and Coauthors, 1995: Lidar measured winds from space: An essential component for weather and climate prediction. Bull. Amer. Meteor. Soc, 76 , 869888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belan, B. D., Grishin A. I. , Zadde G. O. , and Matviyenko G. G. , 1987: Correlation functions and spectral densities of aerosol concentration and of fluctuations in the aerosol backscatter coefficient in the lower atmosphere. Atmos. Oceanic Phys, 23 , 301305.

    • Search Google Scholar
    • Export Citation
  • Bowdle, D. A., 1997: Aerosol backscatter spatial structure: Preliminary results. University of Alabama in Huntsville Rep. to NASA Dryden Flight Research Center, Contract NCC8-22, 41 pp.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 1993: Coherent Doppler lidar signal covariance including wind shear and wind turbulence. Appl. Opt, 33 , 64726481.

  • Frehlich, R. G., 1996: Simulation of coherent Doppler lidar performance in the weak signal regime. J. Atmos. Oceanic Technol, 13 , 646658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 1997: Effects of wind turbulence on coherent Doppler lidar performance. J. Atmos. Oceanic Technol, 14 , 5475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 2000: Simulation of coherent Doppler lidar performance for space-based platforms. J. Appl. Meteor, 39 , 245262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 2001a: Errors for space-based Doppler lidar wind measurements: Definition, performance, and verification. J. Atmos. Oceanic Technol, 18 , 17491772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 2001b: Estimation of velocity error for Doppler lidar measurements. J. Atmos. Oceanic Technol, 18 , 16281639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., and Yadlowsky M. J. , 1994: Performance of mean frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol, 11 , 12171230. Corrigendum, 12, 445–446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Hannon S. , and Henderson S. , 1994: Performance of a 2-μm coherent Doppler lidar for wind measurements. J. Atmos. Oceanic Technol, 11 , 15171528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Hannon S. , and Henderson S. , 1997: Coherent Doppler lidar measurements of winds in the weak signal regime. Appl. Opt, 36 , 34913499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Hannon S. , and Henderson S. , 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor, 86 , 233256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., Hale C. P. , Magee J. R. , Kavaya M. J. , and Huffaker A. V. , 1991: Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers. Opt. Lett, 16 , 773775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., Suni P. J. M. , Hale C. P. , Hannon S. M. , Magee J. R. , Bruns D. L. , and Yuen E. H. , 1993: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens, 31 , 415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffaker, M. R., and Hardesty R. M. , 1996: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE, 84 , 181204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffaker, M. R., Lawrence T. R. , Post M. J. , Priestley J. T. , Hall F. F. Jr., Richter R. A. , and Keeler R. J. , 1984: Feasibility studies for a global wind measuring satellite system (Windsat): Analysis of simulated performance. Appl. Opt, 23 , 25232536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavaya, M. J., Henderson S. W. , Magee J. R. , Hale C. P. , and Huffaker R. M. , 1989: Remote wind profiling with a solid-state Nd: YAG coherent lidar system. Opt. Lett, 14 , 776778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech, 388 , 259288.

  • Marple S. L. Jr., , 1987: Digital Spectral Analysis with Applications. Prentice-Hall, 492 pp.

  • Menzies, R. T., 1986: Doppler lidar atmospheric wind sensors: A comparative performance evaluation for global measurement applications from earth orbit. Appl. Opt, 25 , 25462553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzies, R. T., and Hardesty R. M. , 1989: Coherent Doppler lidar for measurements of wind fields. Proc. IEEE, 77 , 449462.

  • Monin, A. S., and Yaglom A. M. , 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2. The MIT Press, 874 pp.

  • Nastrom, G. D., and Gage K. S. , 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci, 42 , 950960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osipenko, F. P., Chaykovskiy A. P. , and Shcherbakov V. N. , 1989: Microstructure variations and statistical characteristics of the backscatter index of the aerosol in the atmospheric boundary layer as indicated by multifrequency soundings. Atmos. Oceanic Phys, 25 , 528532.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., Flannery B. P. , Teukolsky S. A. , and Vetterling W. T. , 1986: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 818 pp.

    • Search Google Scholar
    • Export Citation
  • Rohaly, G,D., and Krishnamurti T. N. , 1993: An observing system simulation experiment for the Laser Atmospheric Wind Sounder (LAWS). J. Appl. Meteor, 32 , 14521471.

    • Search Google Scholar
    • Export Citation
  • Rothermel, J., Bowdle D. A. , Vaughan J. M. , and Post M. J. , 1989: Evidence of a tropospheric aerosol backscatter background mode. Appl. Opt, 28 , 10401042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothermel, J., Bowdle D. A. , and Srivastava V. , 1996: Mid-tropospheric aerosol backscatter background mode over the Pacific Ocean at 9.1 μm wavelength. Geophys. Res. Lett, 23 , 281284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., 1990: Spectral correlation of atmospheric lidar returns with range-dependent backscatter. J. Opt. Soc. Amer, 7A , 21992207.

    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1993a: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao lower bound. IEEE Trans. Geosci. Remote Sens, 31 , 1627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1993b: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation. IEEE Trans. Geosci. Remote Sens, 31 , 2835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamitou, P., Dabas A. , and Flamant P. H. , 1995: Simulation in the time domain for heterodyne coherent laser radar. Appl. Opt, 34 , 499506.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 658 226 45
PDF Downloads 470 107 8