Retrieval of Arbitrarily Shaped Raindrop Size Distributions from Wind Profiler Measurements

Takahisa Kobayashi Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Takahisa Kobayashi in
Current site
Google Scholar
PubMed
Close
and
Ahoro Adachi Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Ahoro Adachi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An efficient iterative retrieval method for arbitrarily shaped raindrop size distributions (ITRAN) is developed for Doppler spectra measured with a wind profiler. A measured Doppler spectrum is a convolution of the precipitation spectrum and the turbulent spectrum. Deconvolution of the Doppler spectra is achieved through repeated convolutions. The developed method assumes no prior shape of drop size distributions and automatically obtains raindrop size distributions; additionally, it can be applied to large data volumes. Furthermore, it is insensitive to initial values. The method was applied to both simulated and observed spectra. Derived drop size distributions agree with simulated values. Narrower turbulent spectral widths yield better results. Integral values of median volume diameter (D0), liquid water content (LWC), and radar reflectivity factor are estimated with errors of less than 10%. Accurate vertical profiles of raindrop size distributions result when this method is applied to wind profiler data. The technique performed very well with most observed spectra. Some recovered spectra departed from the corresponding measured spectra, for cases in which a clear-air peak could not be accurately reproduced because of uncertainties in the location of the minimum position between the clear-air echo and the precipitation echo. Statistical relationships between LWC and integral rainfall parameters yield interesting features. The median volume diameter is statistically independent of the LWC and is associated with the large variability of the total number of drops, NT, between events. Vertical profiles from one event show a clear inverse relationship between NT and D0

Corresponding author address: Dr. Takahisa Kobayashi, Meteorological Research Institute, 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan. Email: kobay@mri-jma.go.jp

Abstract

An efficient iterative retrieval method for arbitrarily shaped raindrop size distributions (ITRAN) is developed for Doppler spectra measured with a wind profiler. A measured Doppler spectrum is a convolution of the precipitation spectrum and the turbulent spectrum. Deconvolution of the Doppler spectra is achieved through repeated convolutions. The developed method assumes no prior shape of drop size distributions and automatically obtains raindrop size distributions; additionally, it can be applied to large data volumes. Furthermore, it is insensitive to initial values. The method was applied to both simulated and observed spectra. Derived drop size distributions agree with simulated values. Narrower turbulent spectral widths yield better results. Integral values of median volume diameter (D0), liquid water content (LWC), and radar reflectivity factor are estimated with errors of less than 10%. Accurate vertical profiles of raindrop size distributions result when this method is applied to wind profiler data. The technique performed very well with most observed spectra. Some recovered spectra departed from the corresponding measured spectra, for cases in which a clear-air peak could not be accurately reproduced because of uncertainties in the location of the minimum position between the clear-air echo and the precipitation echo. Statistical relationships between LWC and integral rainfall parameters yield interesting features. The median volume diameter is statistically independent of the LWC and is associated with the large variability of the total number of drops, NT, between events. Vertical profiles from one event show a clear inverse relationship between NT and D0

Corresponding author address: Dr. Takahisa Kobayashi, Meteorological Research Institute, 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan. Email: kobay@mri-jma.go.jp

Save
  • Atlas, D., and Ulbrich C. W. , 2000: An observationally based conceptual model of warm oceanic convective rain in the Tropics. J. Appl. Meteor., 39 , 21652181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., Ulbrich C. W. , Marks F. D. Jr., Amitai E. , and Williams C. R. , 1999: Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res., 104 , 61556169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Huang G-J. , Chandrasekar V. , and Gorgucci E. , 2002: A methodology for estimating the parameters of a Gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19 , 633645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, M. J., 1977: Deconvolution: If in doubt, don’t do it. Phys. Bull., 22 , 463466.

  • Currier, P. E., Avery S. K. , Balsley B. B. , Gage K. S. , and Ecklund W. L. , 1992: Use of two wind profilers in the estimation of raindrop distribution. Geophys. Res. Lett., 19 , 10171020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., 1988: Measuring drop-size distributions in clouds with a clear-air sensing Doppler radar. J. Atmos. Oceanic Technol., 5 , 640649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and Kinzer G. D. , 1949: The terminal velocity of fall for water drops in stagnant air. J. Meteor., 6 , 243248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and Waldvogel A. , 1967: A raindrop spectrograph with automatic analysis. Pure Appl. Geophys., 68 , 240246.

  • Kobayashi, T., and Adachi A. , 2001: Measurements of raindrop breakup by using UHF wind profilers. Geophys. Res. Lett., 28 , 40714074.

  • Kobayashi, T., Adachi A. , Nagai T. , and Asano S. , 1999: Detection of cirrus clouds with UHF wind-profiling radar. J. Atmos. Oceanic Technol., 16 , 298304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., and McFarquhar G. M. , 1990: The evolution of three-peak raindrop size distributions in one-dimensional shaft models. Part I: Single-pulse rain. J. Atmos. Sci., 47 , 29963006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Pruppacher, H. R., and Klett J. D. , 1998: Microphysics of Cloud and Precipitation. Kluwer, 954 pp.

  • Rajopadhyaya, D. K., May P. T. , and Vincent R. A. , 1993: A general approach to the retrieval of raindrop size distribution from wind profiler Doppler spectra: Modeling results. J. Atmos. Oceanic Technol., 10 , 710717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., May P. T. , Cifelli R. , Avery S. K. , Willams C. R. , and Ecklund W. L. , 1998: The effect of vertical air motions on rain rates and median volume diameter determined from combined UHF and VHF wind profiler measurements and comparisons with rain gauge measurements. J. Atmos. Oceanic Technol., 15 , 13061319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., May P. T. , and Vincent R. A. , 1999: Comparison of precipitation estimation using single- and dual-frequency wind profilers: Simulations and experimental results. J. Atmos. Oceanic Technol., 16 , 165173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., Baumgardner D. , Ether S. A. , Carter D. A. , and Ecklund W. L. , 1993: Comparison of raindrop size distributions measured by radar wind profiler and by airplane. J. Appl. Meteor., 32 , 694699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., Doji H. , Iwai H. , Kimura I. , Fukao S. , Yamamoto M. , Tsuda T. , and Kato S. , 1990: Computer processing for deriving drop-size distributions and air velocities from VHF Doppler radar spectra. Radio Sci., 5 , 961973.

    • Search Google Scholar
    • Export Citation
  • Schafer, R., Avery S. , May P. , Rajopadhyaya D. , and Williams C. , 2002: Estimation of rainfall drop size distributions from dual-frequency wind profiler spectra using deconvolution and a nonlinear least squares fitting technique. J. Atmos. Oceanic Technol., 19 , 864874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., Oury S. , Black R. A. , Amayenc P. , and Dou X. , 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40 , 11181140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., Mizutani A. , Matsuo M. , Fukao S. , and Kato S. , 1986: A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 3 , 623629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2002: Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations. Radio Sci., 37 .1024, doi:10.1029/2000RS002603.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., Ecklund W. L. , and Gage K. S. , 1995: Classification of precipitating clouds in the Tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol., 12 , 9961012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., Kruger A. , Gage K. S. , Tokay A. , Cifelli R. , Krajewski W. F. , and Kummerow C. , 2000: Comparison of simultaneous rain drop size distributions estimated from two surface disdrometers and a UHF profiler. Geophys. Res. Lett., 27 , 17631766.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 163 38 2
PDF Downloads 99 24 0