Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part I: Methodology

Norman G. Loeb Center for Atmospheric Sciences, Hampton University, Hampton, Virginia

Search for other papers by Norman G. Loeb in
Current site
Google Scholar
PubMed
Close
,
Seiji Kato Center for Atmospheric Sciences, Hampton University, Hampton, Virginia

Search for other papers by Seiji Kato in
Current site
Google Scholar
PubMed
Close
,
Konstantin Loukachine Science Applications International Corporation, Hampton, Virginia

Search for other papers by Konstantin Loukachine in
Current site
Google Scholar
PubMed
Close
, and
Natividad Manalo-Smith Analytical Services and Materials, Hampton, Virginia

Search for other papers by Natividad Manalo-Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Clouds and Earth’s Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the understanding and modeling of the interaction between clouds, aerosols, and radiation at the top of the atmosphere, surface, and within the atmosphere. This paper describes the approach used to estimate top-of-atmosphere (TOA) radiative fluxes from instantaneous CERES radiance measurements on the Terra satellite. A key component involves the development of empirical angular distribution models (ADMs) that account for the angular dependence of the earth’s radiation field at the TOA. The CERES Terra ADMs are developed using 24 months of CERES radiances, coincident cloud and aerosol retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological parameters from the Global Modeling and Assimilation Office (GMAO)’s Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) V4.0.3 product. Scene information for the ADMs is from MODIS retrievals and GEOS DAS V4.0.3 properties over the ocean, land, desert, and snow for both clear and cloudy conditions. Because the CERES Terra ADMs are global, and far more CERES data are available on Terra than were available from CERES on the Tropical Rainfall Measuring Mission (TRMM), the methodology used to define CERES Terra ADMs is different in many respects from that used to develop CERES TRMM ADMs, particularly over snow/sea ice, under cloudy conditions, and for clear scenes over land and desert.

Corresponding author address: Dr. Norman G. Loeb, Mail Stop 420, NASA Langley Research Center, Hampton, VA 23681-2199. Email: n.g.loeb@larc.nasa.gov

Abstract

The Clouds and Earth’s Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the understanding and modeling of the interaction between clouds, aerosols, and radiation at the top of the atmosphere, surface, and within the atmosphere. This paper describes the approach used to estimate top-of-atmosphere (TOA) radiative fluxes from instantaneous CERES radiance measurements on the Terra satellite. A key component involves the development of empirical angular distribution models (ADMs) that account for the angular dependence of the earth’s radiation field at the TOA. The CERES Terra ADMs are developed using 24 months of CERES radiances, coincident cloud and aerosol retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological parameters from the Global Modeling and Assimilation Office (GMAO)’s Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) V4.0.3 product. Scene information for the ADMs is from MODIS retrievals and GEOS DAS V4.0.3 properties over the ocean, land, desert, and snow for both clear and cloudy conditions. Because the CERES Terra ADMs are global, and far more CERES data are available on Terra than were available from CERES on the Tropical Rainfall Measuring Mission (TRMM), the methodology used to define CERES Terra ADMs is different in many respects from that used to develop CERES TRMM ADMs, particularly over snow/sea ice, under cloudy conditions, and for clear scenes over land and desert.

Corresponding author address: Dr. Norman G. Loeb, Mail Stop 420, NASA Langley Research Center, Hampton, VA 23681-2199. Email: n.g.loeb@larc.nasa.gov

Save
  • Ahmad, S. P., and Deering D. W. , 1992: A simple analytical function for bidirectional reflectance. J. Geophys. Res., 97 , 1886718886.

  • Arking, A., and Childs J. D. , 1985: Retrieval of cloud cover parameters from multispectral satellite images. J. Climate Appl. Meteor., 24 , 322333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, W. L., Pagano T. S. , and Salomonson V. V. , 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36 , 10881100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., Ridgway W. , Wiscombe W. J. , Bell T. L. , and Snider J. B. , 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51 , 24342455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95 , 1660116615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101 , 1279112794.

  • Chandrasekhar, S., 1950: Radiative Transfer. Clarendon, 393 pp.

  • Chepfer, H., Brogniez G. B. , Goloub P. , Breon F. M. , and Flamant P. H. , 1999: Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1. J. Quant. Spectrosc. Radiat. Transfer, 63 , 521543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projection of future climate change. Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton et al., Eds., Cambridge University Press, 527–582.

    • Search Google Scholar
    • Export Citation
  • DAO, cited. 1996: Algorithm Theoretical Basis Document for Goddard Earth Observing System Data Assimilation System (GEOS DAS) with a focus on version 2. [Available online at http://gmao.gsfc.nasa.gov/systems/geos4/.].

  • Fu, Q., and Liou K-N. , 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50 , 20082025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geier, E. B., Green R. N. , Kratz D. P. , Minnis P. , Miller W. F. , Nolan S. K. , and Franklin C. B. , cited. 2001: Single satellite footprint TOA/surface fluxes and clouds (SSF) collection document. [Available online at http://asd-www.larc.nasa.gov/ceres/collect_guide/SSF-CG.pdf].

  • Goodberlet, M., Swift C. , and Wilkerson J. , 1990: Ocean surface wind speed measurements of Special Sensor Microwave/Imager (SSM/I). IEEE Geosci. Remote Sens., GE-28 , 828832.

    • Search Google Scholar
    • Export Citation
  • Hapke, B., 1986: Bidirectional reflectance spectroscopy, 4, The extinction coefficient and the opposition effect. Icarus, 67 , 264280.

  • Hess, M., Koepke P. , and Schult I. , 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79 , 831844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., and Stowe L. L. , 2002: Aerosol retrievals from individual AVHRR channels. Part I: Retrieval algorithm and transition from Dave to 6S radiative transfer model. J. Atmos. Sci., 59 , 313334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Loeb N. G. , 2005: Top-of-atmosphere shortwave broadband observed radiance and estimated irradiance from Clouds and the Earth’s Radiant Energy System (CERES) instruments on Terra over polar regions. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Priestley K. J. , Kratz D. P. , Geier E. B. , Green R. N. , Wielicki B. A. , Hinton P. O’R. , and Nolan S. K. , 2001: Determination of unfiltered radiances from the Clouds and the Earth’s Radiant Energy System (CERES) instrument. J. Appl. Meteor., 40 , 822835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Kato S. , and Wielicki B. A. , 2002: Defining top-of-atmosphere flux reference level for Earth radiation budget studies. J. Climate, 15 , 33013309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Smith N. M. , Kato S. , Miller W. F. , Gupta S. K. , Minnis P. , and Wielicki B. A. , 2003a: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology. J. Appl. Meteor., 42 , 240265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Loukachine K. , Smith N. M. , Wielicki B. A. , and Young D. F. , 2003b: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission Satellite. Part II: Validation. J. Appl. Meteor.,, 42 , 17481769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loukachine, K., and Loeb N. G. , 2003: Application of an artificial neural network simulation for top-of-atmosphere radiative flux estimation from CERES. J. Atmos. Oceanic Technol., 20 , 17491757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loukachine, K., and Loeb N. G. , 2004: Top-of-atmosphere flux retrievals from CERES using artificial neural networks. J. Remote Sens. Environ., 93 , 381390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., and Belward A. S. , 1997: The International Geosphere Biosphere Programme Data and Information System Global Land Cover dataset (DISCover). Acta Astronaut., 41 , 681689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Khaiyer M. M. , 2000: Anisotropy of land surface skin temperature derived from satellite data. J. Appl. Meteor., 39 , 11171129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., Garber D. P. , Young D. F. , Arduini R. F. , and Tokano Y. , 1998: Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci., 55 , 33133339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., Young D. F. , Sun-Mack S. , Heck P. W. , Doelling D. R. , and Trepte Q. , 2003: CERES Cloud Property Retrievals from Imagers on TRMM, Terra, and Aqua Proc. SPIE 10th Int. Symp. on Remote Sensing: Conf. on Remote Sensing of Clouds and the Atmosphere VII, Barcelona, Spain, 37–48.

  • Minnis, P., Gambheer A. V. , and Doelling D. R. , 2004: Azimuthal anisotropy of longwave and infrared window radiances from CERES TRMM and Terra data. J. Geophys. Res., 109 .D08202, doi:10.1029/2003JD004471.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and Tanaka M. , 1986: Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 35 , 1321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and Tanaka M. , 1988: Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40 , 5169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahman, H., Verstraete M. M. , and Pinty B. , 1993: Coupled surface-atmosphere reflectance (CSAR) model 1. Model description and inversion on synthetic data. J. Geophys. Res., 98 , 2077920789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62 , 947973.

  • Smith, G. L., 1994: Effects of time response on the point spread function of a scanning radiometer. Appl. Opt., 33 , 70317037.

  • Smith, G. L., Green R. N. , Raschke E. , Avis L. M. , Suttles J. T. , Wielicki B. A. , and Davies R. , 1986: Inversion methods for satellite studies of the earth radiation budget: Development of algorithms for the ERBE mission. Rev. Geophys., 24 , 407421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suttles, J. T., Wielicki B. A. , and Vemury S. , 1992: Top-of-atmosphere radiative fluxes: Validation of ERBE scanner inversion algorithm using Nimbus-7 ERB data. J. Appl. Meteor., 31 , 784796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, G. E., and Stamnes K. , 1999: Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, 517 pp.

  • Wielicki, B. A., Barkstrom B. R. , Harrison E. F. , Lee R. B. III, Smith G. L. , and Cooper J. E. , 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc, 77 , 853868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilber, A. C., Kratz D. P. , and Gupta S. K. , 1999: Surface emissivity maps for use in satellite retrievals of longwave radiation. NASA Tech. Rep. TP-1999-209362, 35 pp.

  • Young, D. F., Minnis P. , Doelling D. R. , Gibson G. G. , and Wong T. , 1998: Temporal interpolation methods for the Clouds and the Earth’s Radiant Energy System (CERES) experiment. J. Appl. Meteor., 37 , 572590.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1471 412 89
PDF Downloads 1007 248 24