Measurements of Ocean Surface Backscattering Using an Airborne 94-GHz Cloud Radar—Implication for Calibration of Airborne and Spaceborne W-Band Radars

Lihua Li Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Lihua Li in
Current site
Google Scholar
PubMed
Close
,
Gerald M. Heymsfield NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gerald M. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Lin Tian Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Lin Tian in
Current site
Google Scholar
PubMed
Close
, and
Paul E. Racette NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Paul E. Racette in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Backscattering properties of the ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W band) cloud radar on board a NASA ER-2 high-altitude aircraft. This unprecedented dataset enhances our knowledge about the ocean surface scattering mechanism at 94 GHz. The measurement set includes the normalized ocean surface cross section over a range of the incidence angles under a variety of wind conditions. It was confirmed that even at 94 GHz, the normalized ocean surface radar cross section, σo, is insensitive to surface wind conditions near a 10° incidence angle, a finding similar to what has been found in the literature for lower frequencies. Analysis of the radar measurements also shows good agreement with a quasi-specular scattering model at low incidence angles. The results of this work support the proposition of using the ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

Corresponding author address: Lihua Li, NASA Goddard Space Flight Center, Code 912, Bldg. 33, Rm. C426, Greenbelt, MD 20771. Email: lihua@agnes.gsfc.nasa.gov

Abstract

Backscattering properties of the ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W band) cloud radar on board a NASA ER-2 high-altitude aircraft. This unprecedented dataset enhances our knowledge about the ocean surface scattering mechanism at 94 GHz. The measurement set includes the normalized ocean surface cross section over a range of the incidence angles under a variety of wind conditions. It was confirmed that even at 94 GHz, the normalized ocean surface radar cross section, σo, is insensitive to surface wind conditions near a 10° incidence angle, a finding similar to what has been found in the literature for lower frequencies. Analysis of the radar measurements also shows good agreement with a quasi-specular scattering model at low incidence angles. The results of this work support the proposition of using the ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

Corresponding author address: Lihua Li, NASA Goddard Space Flight Center, Code 912, Bldg. 33, Rm. C426, Greenbelt, MD 20771. Email: lihua@agnes.gsfc.nasa.gov

Save
  • Barrick, D. E., 1974: Wind dependence of quasi-specular microwave sea scatter. IEEE Trans. Antennas Propag., 22 , 135136.

  • Brown, G., 1978: Backscattering from a Gaussian-distributed perfectly conducting rough surface. IEEE Trans. Antennas Propag., 26 , 472482.

  • Brown, G., 1990: Quasi-specular scattering from the air–sea interface. Surface Waves and Fluxes, Vol. 2, W. Plant and G. Geernart, Eds., Kluwer Academic, 1–40.

    • Search Google Scholar
    • Export Citation
  • Caylor, I. J., Heymsfield G. M. , Meneghini R. , and Miller L. S. , 1997: Correction of sampling errors in ocean surface cross-sectional estimates from nadir-looking weather radar. J. Atmos. Oceanic Technol., 14 , 203210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, H. L., and Fung A. K. , 1977: A theory of sea scatter at large incident angles. J. Geophys. Res., 82 , 34393444.

  • Clothiaux, E., Miller M. , Albrecht B. , Ackerman T. , Verlinde J. , Babb D. , Peters R. , and Syrett W. , 1995: An evaluation of a 94-Ghz radar for radar remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12 , 201229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C., and Munk W. , 1954: Measurements of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer., 144 , 838850.

    • Search Google Scholar
    • Export Citation
  • European Space Agency, 2001: EarthCARE—Earth Clouds, Aerosols and Radiation Explorer. Five Candidate Earth Explorer Core Missions Assessment Rep. SP-1257(1), ESA Publication Division, Noordwijk, Netherlands, 135 pp.

  • Freilich, M. H., and Vanhoff B. A. , 2003: The relationship between winds, surface roughness, and radar backscatter at low incidence angles from TRMM precipitation radar measurements. J. Atmos. Oceanic Technol., 20 , 549562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and Coauthors, 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13 , 795809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., Geerts B. , and Tian L. , 2000: TRMM precipitation radar reflectivity profiles as compared with high-resolution airborne and ground-based radar measurements. J. Appl. Meteor., 39 , 20802102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and Franklin J. L. , 1999: The NCAR GPS dropsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Houghton, J. T., Meira Filho L. G. , Callander B. A. , Harris N. , Kattenberg A. , and Maskell K. , Eds. 1996: Climate Change 1995: The Science of Climate Change. Cambridge University Press, 572 pp.

  • Iguchi, T., and Meneghini R. , 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11 , 15071516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, F. C., Walton W. T. , and Hines D. E. , 1992: Sea surface mean square slope from Ku-band backscatter data. J. Geophys. Res., 97 , 1141111427.

  • Jones, W. L., Schroeder L. C. , and Michell J. L. , 1976: Aircraft measurements of the microwave scattering signature of the ocean. IEEE Trans. Antennas Propag., 25 , 5261.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., 1995: A generalized surface echo radar equation for down-looking pencil beam radar. IEICE Trans. Commun., E78B , 12451248.

  • Kozu, T., Satoh S. , Hanado H. , Manabe T. , Okumura M. , Okamoto K. , and Kawanishi T. , 2000: Onboard surface detection algorithm from TRMM precipitation radar. IEICE Trans. Commun., E83B , 20212031.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1988: Cloud and precipitation remote sensing at 94 GHz. IEEE Trans. Geosci. Remote Sens., 26 , 10691089.

  • Li, L., and Coauthors, 2001: Retrieval of atmospheric attenuation using combined ground-based and airborne 95-GHz cloud radar measurements. J. Atmos. Oceanic Technol., 18 , 13451353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., Heymsfield G. M. , Racette P. E. , Tian L. , and Zenker E. , 2004: A 94-GHz cloud radar system on a NASA high-altitude ER-2 aircraft. J. Atmos. Oceanic Technol., 21 , 13781388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, H., 1985: An updated model for millimeter-wave propagation in moist air. Radio Sci., 20 , 10691089.

  • Masuko, H., Okamoto K. , Shimada M. , and Niwa S. , 1986: Measurements of microwave backscattering signatures of the ocean surface using X-band and Ka band airborne scatterometers. J. Geophys. Res., 91 , 1306513083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGill, M. J., and Coauthors, 2004: Combined lidar–radar remote sensing: Initial results from CRYSTAL-FACE. J. Geophys. Res., 109 .D07203, doi:10.1029/2003JD004030.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and Kozu T. , 1990: Spaceborne Weather Radar. Artech House, 199 pp.

  • Meneghini, R., Eckerman J. , and Atlas D. , 1983: Determination of rain rate from a spaceborne radar using measurements of total attenuation. IEEE Trans. Geosci. Remote Sens., 21 , 3443.

    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., McIntosh R. E. , Kelly R. , and Vali G. , 1994: An airborne 95-GHz dual polarization radar for cloud studies. IEEE Trans. Geosci. Remote Sens., 1 , 731739.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1977: Studies of backscatter sea return with a CW, dual-frequency, X-band radar. IEEE Trans. Antennas Propag., 25 , 2836.

  • Plant, W. J., 2002: A stochastic, multiscale model of microwave backscatter from the ocean. J. Geophys. Res., 107 .3120, doi:10.1029/2001JC000909.

    • Search Google Scholar
    • Export Citation
  • Sadowy, G. A., and Coauthors, 1997: The NASA DC-8 airborne cloud radar: Design and preliminary results. Proc. Int. Geoscience and Remote Sensing Symp., Vol. 4, Singapore, Singapore, IEEE, 1466–1469.

  • Sekelsky, S. M., 2002: Near field reflectivity and antenna boresight gain corrections for millimeter-wave atmospheric radars. J. Atmos. Oceanic Technol., 19 , 468477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekelsky, S. M., and McIntosh R. E. , 1996: Cloud observations with polarimetric 33 GHz and 95 GHz radar. Meteor. Atmos. Phys., 59 , 123140.

  • Stephens, G. L., Tsay S. C. , Stackhouse P. W. , and Flatau P. J. , 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Atmos. Sci., 47 , 17421752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Ulaby, F. T., Moore R. K. , and Fung A. K. , 1981: Microwave Remote Sensing: Active and Passive. Vol. 1. Artech House, 456 pp.

  • Valenzuela, G. R., 1978: Theories for the interaction of electromagnetic and oceanic waves—A review. Bound.-Layer Meteor., 13 , 6185.

  • Wu, J., 1972: Sea-surface slope and equilibrium wind–wave spectra. Phys. Fluids, 15 , 741747.

  • Wu, J., 1990: Mean square slopes of the wind disturbed water surface, their magnitude, directionality, and composition. Radio Sci., 25 , 3748.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 614 222 16
PDF Downloads 511 137 24