Numerical and Physical Diffusion: Can Wave Prediction Models Resolve Directional Spread?

F. Ardhuin Centre Militaire d’Océanographie, EPSHOM, Brest, France

Search for other papers by F. Ardhuin in
Current site
Google Scholar
PubMed
Close
and
T. H. C. Herbers Department of Oceanography, Naval Postgraduate School, Monterey, California

Search for other papers by T. H. C. Herbers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new semi-Lagrangian advection scheme called multistep ray advection is proposed for solving the spectral energy balance equation of ocean surface gravity waves. Existing so-called piecewise ray methods advect wave energy over a single time step using “pieces” of ray trajectories, after which the spectrum is updated with source terms representing various physical processes. The generalized scheme presented here allows for an arbitrary number N of advection time steps along the same rays, thus reducing numerical diffusion, and still including source-term variations every time step. Tests are performed for alongshore uniform bottom topography, and the effects of two types of discretizations of the wave spectrum are investigated, a finite-bandwidth representation and a single frequency and direction per spectral band. In the limit of large N, both the accuracy and computation cost of the method increase, approaching a nondiffusive fully Lagrangian scheme. Even for N = 1 the semi-Lagrangian scheme test results show less numerical diffusion than predictions of the commonly used first-order upwind finite-difference scheme. Application to the refraction and shoaling of narrow swell spectra across a continental shelf illustrates the importance of controlling numerical diffusion. Numerical errors in a single-step (Δt = 600 s) scheme implemented on the North Carolina continental shelf (typical swell propagation time across the shelf is about 3 h) are shown to be comparable to the angular diffusion predicted by the wave–bottom Bragg scattering theory, in particular for narrow directional spectra, suggesting that the true directional spread of swell may not always be resolved in existing wave prediction models, because of excessive numerical diffusion. This diffusion is effectively suppressed in cases presented here with a four-step semi-Lagrangian scheme, using the same value of Δt.

Corresponding author address: Dr. Fabrice Ardhuin, SHOM/CMO/RED, Vagues et domaine littoral, 13 Rue du Chatellier, Brest 29609, France. Email: ardhuin@shom.fr

Abstract

A new semi-Lagrangian advection scheme called multistep ray advection is proposed for solving the spectral energy balance equation of ocean surface gravity waves. Existing so-called piecewise ray methods advect wave energy over a single time step using “pieces” of ray trajectories, after which the spectrum is updated with source terms representing various physical processes. The generalized scheme presented here allows for an arbitrary number N of advection time steps along the same rays, thus reducing numerical diffusion, and still including source-term variations every time step. Tests are performed for alongshore uniform bottom topography, and the effects of two types of discretizations of the wave spectrum are investigated, a finite-bandwidth representation and a single frequency and direction per spectral band. In the limit of large N, both the accuracy and computation cost of the method increase, approaching a nondiffusive fully Lagrangian scheme. Even for N = 1 the semi-Lagrangian scheme test results show less numerical diffusion than predictions of the commonly used first-order upwind finite-difference scheme. Application to the refraction and shoaling of narrow swell spectra across a continental shelf illustrates the importance of controlling numerical diffusion. Numerical errors in a single-step (Δt = 600 s) scheme implemented on the North Carolina continental shelf (typical swell propagation time across the shelf is about 3 h) are shown to be comparable to the angular diffusion predicted by the wave–bottom Bragg scattering theory, in particular for narrow directional spectra, suggesting that the true directional spread of swell may not always be resolved in existing wave prediction models, because of excessive numerical diffusion. This diffusion is effectively suppressed in cases presented here with a four-step semi-Lagrangian scheme, using the same value of Δt.

Corresponding author address: Dr. Fabrice Ardhuin, SHOM/CMO/RED, Vagues et domaine littoral, 13 Rue du Chatellier, Brest 29609, France. Email: ardhuin@shom.fr

Save
  • Ardhuin, F., 2001: Swell across the continental shelf. Ph.D. thesis, Naval Postgraduate School, 133 pp. [Available online at http://www.shom.fr/fr_page/fr_act_oceano/vagues/PLUS/PUBLIS/Ardhuin_2001_phd.pdf].

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Herbers T. H. C. , 2002: Bragg scattering of random surface gravity waves by irregular sea bed topography. J. Fluid Mech., 451 , 133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., Herbers T. H. C. , and O’Reilly W. C. , 2001: A hybrid Eulerian–Lagrangian model for spectral wave evolution with application to bottom friction on the continental shelf. J. Phys. Oceanogr., 31 , 14981516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., Herbers T. H. C. , O’Reilly W. C. , and Jessen P. F. , 2003a: Swell transformation across the continental shelf. Part II: Validation of a spectral energy balance equation. J. Phys. Oceanogr., 33 , 19401953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., O’Reilly W. C. , Herbers T. H. C. , and Jessen P. F. , 2003b: Swell transformation across the continental shelf. Part I: Attenuation and directional broadening. J. Phys. Oceanogr., 33 , 19211939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., Chapron B. , and Elfouhaily T. , 2004: Waves and the air–sea momentum budget: Implications for ocean circulation modeling. J. Phys. Oceanogr., 34 , 17411755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benoit, M., Marcos F. , and Becq F. , 1996: Development of a third generation shallow-water wave model with unstructured spatial meshing. Proceedings of the 25th International Conference on Coastal Engineering, ASCE, 465–478.

    • Search Google Scholar
    • Export Citation
  • Booji, N., Ris R. C. , and Holthuijsen L. H. , 1999: A third-generation wave model for coastal regions. 1. Model description and validation. J. Geophys. Res., 104 , 76497666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouws, E., and Battjes J. A. , 1982: A Monte-Carlo approach to the computation of refraction of water waves. J. Geophys. Res., 87 , C8,. 57185722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., and Garrett C. J. R. , 1969: Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. London, A302 , 529554.

  • Cavaleri, L., and Malanotte-Rizzoli P. , 1981: Wind wave prediction in shallow water: Theory and applications. J. Geophys. Res., 86 , C5,. 1096110975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, R. S., 1967: Some applications of a digital computer to hydraulic engineering problems. Tech. Rep. 80, Department of Civil Engineering, Stanford University, 114 pp.

  • Gelci, R., Cazalé H. , and Vassal J. , 1957: Prévision de la houle. La méthode des densités spectroangulaires. Bull. Inf. Comité Océanogr. Etude Côtes, 9 , 416435.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1966: Feynman diagrams and interaction rules of wave–wave scattering processes. Rev. Geophys., 4 , 1,. 132.

  • Herbers, T. H. C., and Burton M. C. , 1997: Nonlinear shoaling of directionally spread waves on a beach. J. Geophys. Res., 102 , C9,. 2110121114.

  • Herterich, K., and Hasselmann K. , 1980: A similarity relation for the non-linear energy transfer in a finite-depth gravity-wave spectrum. J. Fluid Mech., 97 , 215224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuik, A. J., van Vledder G. P. , and Holthuijsen L. H. , 1988: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18 , 10201034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavrenov, I. V., 2003: Wind-Waves in Oceans: Dynamics and Numerical Simulations. Springer, 376 pp.

  • Lavrenov, I. V., and Onvlee J. R. A. , 1995: A comparison between the results of wave energy propagation of the WAM model and the interpolation-ray method. Russian Meteor. Hydrol., 3 , 2942.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1957: On the transformation of a continuous spectrum by refraction. Proc. Cambridge Philos. Soc., 53 , 1,. 226229.

  • Mei, C. C., 1989: Applied Dynamics of Ocean Surface Waves. 2d ed. World Scientific, 740 pp.

  • O’Reilly, W. C., and Guza R. T. , 1991: Comparison of spectral refraction and refraction–diffraction wave models. J. Waterway, Port Coast. Ocean Eng., 117 , 199215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, W. C., and Guza R. T. , 1993: A comparison of two spectral wave models in the Southern California Bight. Coastal Eng., 19 , 263282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reniers, A. J. H. M., Roelvink J. A. , and Thornton E. B. , 2004: Morphodynamic modeling of an embayed beach under wave group forcing. J. Geophys. Res., 109 .C01030, doi:10.1029/2002JC001586.

    • Search Google Scholar
    • Export Citation
  • Sobey, R. J., 1986: Wind-wave prediction. Annu. Rev. Fluid Mech., 18 , 149172.

  • Tolman, H. L., 1994: Wind waves and moveable-bed bottom friction. J. Phys. Oceanogr., 24 , 9941009.

  • Tolman, H. L., 2002: Alleviating the garden sprinkler effect in wind wave models. Ocean Modell., 4 , 269289.

  • WAMDI Group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18 , 17751810.

  • Whitham, G. B., 1974: Linear and Nonlinear Waves. Wiley, 636 pp.

  • Willebrand, J., 1975: Energy transport in a nonlinear and inhomogeneous random gravity wave field. J. Fluid Mech., 70 , 113126.

  • Young, I. R., 1988: A shallow water spectral wave model. J. Geophys. Res., 93 , C5,. 51135129.

  • Zaslavskii, M. M., and Polnikov V. G. , 1998: Three wave quasikinetic equation approximation of nonlinear spectrum evolution in shallow water. Izv. Acad. Sci., 34 , 677685.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 188 81 2
PDF Downloads 114 48 0