Estimation of the Turbulent Fraction in the Free Atmosphere from MST Radar Measurements

Richard Wilson Service d’Aéronomie/IPSL, Université Pierre et Marie Curie, Paris, France

Search for other papers by Richard Wilson in
Current site
Google Scholar
PubMed
Close
,
Francis Dalaudier Service d’Aéronomie/IPSL, Université Pierre et Marie Curie, Paris, France

Search for other papers by Francis Dalaudier in
Current site
Google Scholar
PubMed
Close
, and
Francois Bertin Service d’Aéronomie/IPSL, Université Pierre et Marie Curie, Paris, France

Search for other papers by Francois Bertin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Small-scale turbulence in the free atmosphere is known to be intermittent in space and time. The turbulence fraction of the atmosphere is a key parameter in order to evaluate the transport properties of small-scale motions and to interpret clear-air radar measurements as well.

Mesosphere–stratosphere–troposphere (MST)/stratosphere–troposphere (ST) radars provide two independent methods for the estimation of energetic parameters of turbulence. First, the Doppler spectral width σ2 is related to the dissipation rate of kinetic energy εk. Second, the radar reflectivity, or C2n, relates to the dissipation rate of available potential energy εp. However, these two measures yield estimates that differ with respect to an important point. The Doppler width measurements, and related εk, are reflectivity-weighted averages. On the other hand, the reflectivity estimate is a volume-averaged quantity. The values of εp depend on both the turbulence intensity and the turbulent fraction within the radar sampling volume.

Now, the two dissipation rates εp and εk are related quantities as shown by various measurements within stratified fluids (atmosphere, ocean, lakes, or laboratory). Therefore, by assuming a “canonical” value for the ratio of dissipation rates, an indirect method is proposed to infer the turbulent fraction from simultaneous radar measurements of reflectivity and Doppler broadening within a sampling volume. This method is checked by using very high resolution radar measurements (30 m and 51 s), obtained by the PROUST radar during a field campaign. The method is found to provide an unbiased estimation of the turbulent fraction, within a factor of 2 or less.

Corresponding author address: Dr. Richard Wilson, Service d’Aéronomie Université, Paris VI, Paris 75005, France. Email: richard.wilson@aero.jussieu.fr

Abstract

Small-scale turbulence in the free atmosphere is known to be intermittent in space and time. The turbulence fraction of the atmosphere is a key parameter in order to evaluate the transport properties of small-scale motions and to interpret clear-air radar measurements as well.

Mesosphere–stratosphere–troposphere (MST)/stratosphere–troposphere (ST) radars provide two independent methods for the estimation of energetic parameters of turbulence. First, the Doppler spectral width σ2 is related to the dissipation rate of kinetic energy εk. Second, the radar reflectivity, or C2n, relates to the dissipation rate of available potential energy εp. However, these two measures yield estimates that differ with respect to an important point. The Doppler width measurements, and related εk, are reflectivity-weighted averages. On the other hand, the reflectivity estimate is a volume-averaged quantity. The values of εp depend on both the turbulence intensity and the turbulent fraction within the radar sampling volume.

Now, the two dissipation rates εp and εk are related quantities as shown by various measurements within stratified fluids (atmosphere, ocean, lakes, or laboratory). Therefore, by assuming a “canonical” value for the ratio of dissipation rates, an indirect method is proposed to infer the turbulent fraction from simultaneous radar measurements of reflectivity and Doppler broadening within a sampling volume. This method is checked by using very high resolution radar measurements (30 m and 51 s), obtained by the PROUST radar during a field campaign. The method is found to provide an unbiased estimation of the turbulent fraction, within a factor of 2 or less.

Corresponding author address: Dr. Richard Wilson, Service d’Aéronomie Université, Paris VI, Paris 75005, France. Email: richard.wilson@aero.jussieu.fr

Save
  • Alisse, J-R., and Sidi C. , 2000: Experimental probability density functions of small-scale fluctuations in the stably stratified atmosphere. J. Fluid Mech., 402 , 137162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alisse, J-R., Haynes P. H. , Vanneste J. , and Sidi C. , 2000: Quantification of turbulent mixing in the lower stratosphere from temperature and velocity microstructure measurements. Geophys. Res. Lett., 27 , 26212624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barat, J., 1982: Some characteristics of clear-air turbulence in the middle stratosphere. J. Atmos. Sci., 39 , 25532564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., 1995: Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of techniques. J. Atmos. Oceanic Technol., 12 , 8595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crane, R. K., 1980: A review of radar observation of turbulence in the lower stratosphere. Radio Sci., 15 , 177193.

  • Delage, D., Bertin F. , Crémieu A. , Massebeuf M. , Ney R. , and Desautez A. , 1996: Real time data processing algorithms and first results obtained by the proust radar in its final configuration. Proc. Seventh Workshop on Technical and Scientific Aspects of MST-ST Radars, Boulder, CO, SCOSTEP, 209–212.

  • Delage, D., Roca R. , Delcourt J. , Crémieu A. , Massebeuf M. , Ney R. , and Velthoven V. , 1997: A consistency check of three radar methods for monitoring eddy diffusion and energy dissipation rates through tropopause. Radio Sci., 32 , 757768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desaubies, Y., and Smith W. K. , 1982: Statistics of Richardson number and instability in oceanic internal waves. J. Phys. Oceanogr., 12 , 12451259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1981: Turbulent vertical transport due to thin intermittent mixing layers in the stratosphere and other stable fluids. Science, 211 , 10411042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, J., and Wilson R. , 2000: Estimates of turbulent parameters in the lower stratosphere-upper troposphere by radar observations: A novel twist. Geophys. Res. Lett., 27 , 26252628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, J., Wilson R. , Dalaudier F. , and Sidi C. , 2001: Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements. Ann. Geophys., 19 , 945952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.

  • Fairall, C. W., White A. B. , and Thomson D. W. , 1991: A stochastic model of gravity-wave-induced clear-air turbulence. J. Atmos. Sci., 48 , 17711790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, E., 1992: Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer. J. Atmos. Sci., 49 , 14941509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukao, S., and Coauthors, 1994: Seasonal variability of vertical diffusivity in the middle atmosphere 1. Three-year observations by the middle and upper atmosphere radar. J. Geophys. Res., 99 , 1897318987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gage, K. S., Green J. L. , and VanZandt T. E. , 1980: Use of doppler radar for the measurement of atmospheric turbulence parameters from the intensity of clear air echo. Radio Sci., 15 , 407416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., and Strauch R. G. , 1983: Radar Observation of Clear Air and Clouds. Elsevier, 280 pp.

  • Hill, R. J., 1978: Spectra of fluctuations in refractivity, temperature, humidity, and the temperature-humidity cospectrum in the inertial and dissipation range. Radio Sci., 13 , 953961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocking, W. K., 1983: On the extraction of atmospheric turbulence parameter from radar backscatter doppler spectra—i. Theory. J. Atmos. Terr. Phys., 45 , 89102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocking, W. K., 1985: Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review. Radio Sci., 20 , 14031422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocking, W. K., 1999: The dynamical parameters of turbulence theory as they apply to middle atmosphere studies. Earth Planets Space, 51 , 525541.

  • Hocking, W. K., and Mu K. L. , 1997: Upper and middle tropospheric kinetic energy dissipation rates from measurements of C2 n—Review of theories, in-situ investigations, and experimental studies using the buckland park atmospheric radar in Australia. J. Atmos. Sol. Terr. Phys., 59 , 17791803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivey, G., and Imberger J. , 1991: On the nature of turbulence in a stratified fluid. Part 1: The energetics of mixing. J. Phys. Oceanogr., 21 , 650658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., Montgomery E. T. , Polzin K. L. , St. Laurent L. C. , Schmidt R. W. , and Toole J. M. , 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403 , 179182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., Waco D. E. , and Aldefang S. I. , 1974: Stratospheric mixing estimated from high altitude turbulence measurements. J. Appl. Meteor., 13 , 488493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McEwan, A. D., 1983: Internal mixing in stratified fluids. J. Fluid Mech., 128 , 5980.

  • Nastrom, G. D., and Eaton F. D. , 1997: Tubulence eddy dissipation rates from radar observations at 5–20 km at White Sands Missile Range, New Mexico. J. Geophys. Res., 102 , 1949519505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ottersten, H., 1969a: Radar backscattering from the turbulent clear atmosphere. Radio Sci., 4 , 12511255.

  • Ottersten, H., 1969b: Mean vertical gradient of potential refractive index in turbulent mixing and radar detection of cat. Radio Sci., 4 , 12471249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petitdidier, M., Desautez A. , Glass M. , and Penazzi G. , 1985: A decoder for a 30 m height resolution st radar. Radio Sci., 20 , 11411145.

  • Press, H. W., Teukolsky S. A. , Vetterling W. T. , and Flannery B. P. , 1992: Numerical Recipes in FORTRAN 77: The Art of Scientific Computing. Vol. 1, Fortran Numerical Recipes, Cambridge University Press, 933 pp.

    • Search Google Scholar
    • Export Citation
  • Rohr, J. J., and Van Atta C. W. , 1987: Mixing efficiency in stably stratified growing turbulence. J. Geophys. Res., 92 , 54815488.

  • Sato, T., and Woodman R. F. , 1982: Fine altitude resolution observations of stratospheric turbulent layers by the Arecibo 430 mhz radar. J. Atmos. Sci., 39 , 25462552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St Laurent, L., and Schmitt R. W. , 1999: The contribution of salt fingers to vertical mixing in the North Atlantic Trace Release Experiment. J. Phys. Oceanogr., 29 , 14041424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatarskii, V. I., 1961: Wave Propagation in a Turbulent Medium. McGraw-Hill, 285 pp.

  • Taylor, J. R., 1992: The energetics of breaking events in a resonantly forced internal wave field. J. Fluid Mech., 239 , 309340.

  • Vaneste, J., and Haynes P. H. , 2000: Intermittent mixing in strongly stratified fluids as a random walk. J. Fluid Mech., 411 , 165185.

  • VanZandt, T. E., Green J. L. , Gage K. S. , and Clarck W. L. , 1978: Vertical profiles of refractivity turbulence structure constant: Comparison of observations by the sunset radar with a new theoretical model. Radio Sci., 13 , 819829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., Clarck W. L. , Gage K. S. , Williams C. R. , and Ecklund W. L. , 2000: A dual-wavelength radar technique for measuring the turbulent energy dissipation rate ε. Geophys. Res. Lett., 27 , 25372540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1981: Using radar to estimate dissipation rate in thin layer of turbulence. Radio Sci., 16 , 14011406.

  • Weinstock, J., 1992: Vertical diffusivity and overturning length in stably stratified turbulence. J. Geophys. Res., 97 , 1265312658.

  • Wilson, R., and Dalaudier F. , 2003: Simultaneous observations of atmospheric turbulence in the lower stratosphere from balloon soundings and ST radar measurements. Proc. 10th MST Radar Workshop, Piura, Peru, SCOSTEP/ICP/UDEP, 204–207.

    • Search Google Scholar
    • Export Citation
  • Woodman, R. F., 1980: High-altitude-resolution stratospheric measurements with the arecibo 2380-MHz radar. Radio Sci., 15 , 423430.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 494 267 48
PDF Downloads 206 49 6