Dual-Polarization Spectral Analysis for Retrieval of Effective Raindrop Shapes

D. N. Moisseev Colorado State University, Fort Collins, Colorado

Search for other papers by D. N. Moisseev in
Current site
Google Scholar
PubMed
Close
,
V. Chandrasekar Colorado State University, Fort Collins, Colorado

Search for other papers by V. Chandrasekar in
Current site
Google Scholar
PubMed
Close
,
C. M. H. Unal Delft University of Technology, Delft, Netherlands

Search for other papers by C. M. H. Unal in
Current site
Google Scholar
PubMed
Close
, and
H. W. J. Russchenberg Delft University of Technology, Delft, Netherlands

Search for other papers by H. W. J. Russchenberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dual-polarization radar observations of precipitation depend on size–shape relations of raindrops. There are several studies presented in literature dedicated to the investigation of this relation. In this work a new approach of investigating raindrop size–shape relation on short time and spatial scales from radar observations is presented. The presented method is based on the use of dual-polarization Doppler power spectral analysis. By measuring complete Doppler spectra at a sufficiently high elevation angle at two polarization settings, namely, horizontal and vertical, it is possible to retrieve drop size distribution (DSD) parameters, ambient air velocity, spectral broadening, and the slope of the assumed linear dependence of raindrop size–shape relation.

This paper is mainly focused on the development of the retrieval algorithm and analysis of its performance. As a part of the proposed method an efficient algorithm for DSD parameter retrieval was developed. It is shown that the DSD parameter retrieval method, which usually requires the solution of five-parameter nonlinear optimization problems, can be simplified to a three-parameter nonlinear least squares problem.

Furthermore, the performance of the proposed retrieval technique is illustrated on the dual-polarization measurements collected by the S-band Transportable Atmospheric Radar (TARA) at Cabauw, Netherlands, and by the Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) radar from Greeley, Colorado.

Corresponding author address: Dmitri N. Moisseev, Department of Electrical Engineering, Colorado State University, Fort Collins, CO 80523. Email: dmitri@engr.colostate.edu

Abstract

Dual-polarization radar observations of precipitation depend on size–shape relations of raindrops. There are several studies presented in literature dedicated to the investigation of this relation. In this work a new approach of investigating raindrop size–shape relation on short time and spatial scales from radar observations is presented. The presented method is based on the use of dual-polarization Doppler power spectral analysis. By measuring complete Doppler spectra at a sufficiently high elevation angle at two polarization settings, namely, horizontal and vertical, it is possible to retrieve drop size distribution (DSD) parameters, ambient air velocity, spectral broadening, and the slope of the assumed linear dependence of raindrop size–shape relation.

This paper is mainly focused on the development of the retrieval algorithm and analysis of its performance. As a part of the proposed method an efficient algorithm for DSD parameter retrieval was developed. It is shown that the DSD parameter retrieval method, which usually requires the solution of five-parameter nonlinear optimization problems, can be simplified to a three-parameter nonlinear least squares problem.

Furthermore, the performance of the proposed retrieval technique is illustrated on the dual-polarization measurements collected by the S-band Transportable Atmospheric Radar (TARA) at Cabauw, Netherlands, and by the Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) radar from Greeley, Colorado.

Corresponding author address: Dmitri N. Moisseev, Department of Electrical Engineering, Colorado State University, Fort Collins, CO 80523. Email: dmitri@engr.colostate.edu

Save
  • Andsager, K., Beard K. V. , and Laird N. F. , 1999: Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56 , 26732683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., Srivastava R. C. , and Sekhon R. S. , 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11 , 135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and Chuang C. , 1987: A new method for the equilibrium shape of raindrops. J. Atmos. Sci., 44 , 15091524.

  • Beard, K. V., and Kubesh R. J. , 1991: Laboratory measurements of small raindrop distortion. Part II: Oscillation frequency and modes. J. Atmos. Sci., 48 , 22452264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., Johnson D. B. , and Jameson A. R. , 1983: Collision forcing of raindrop oscillations. J. Atmos. Sci., 40 , 455462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., Zhang G. , and Vivekanandan J. , 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41 , 674685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., Zhang G. , and Vivekanandan J. , 2004: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol., 21 , 584598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Chandrasekar V. , Hubbert J. , Gorgucci E. , Randeu W. , and Schoenhuber M. , 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60 , 354365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunkow, D., Bringi V. N. , Kennedy P. C. , Chandrasekar V. , Mueller E. A. , and Bowie R. K. , 2000: A description of CSU–CHILL national radar facility. J. Atmos. Oceanic Technol., 17 , 15961608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brussaard, G., 1976: A meteorological model for rain-induced cross polarization. IEEE Trans. Antennas Propag., 24 , 511.

  • Chandrasekar, V., Bringi V. , and Brockwell P. , 1986: Statistical properties of dual-polarized radar signals. Preprints, 23d Conf. on Radar Meteorology, Snowmass, CO, Amer. Meteor. Soc., 193–196.

  • Chandrasekar, V., Cooper W. A. , and Bringi V. N. , 1988: Axis ratios and oscillations of raindrops. J. Atmos. Sci., 45 , 13231333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnic D. S. , 1993: Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.

  • Giangrande, S. E., Babb D. M. , and Verlinde J. , 2001: Processing millimeter wave profiler radar spectra. J. Atmos. Oceanic Technol., 18 , 15771583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., Cherry S. M. , and Bringi V. N. , 1982: Comparison of dual-polarized radar measurements of rain with ground-based disdrometer measurements. J. Appl. Meteor., 21 , 252256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golub, G., and Pereyra V. , 2003: Separable nonlinear least squares: The variable projection method and its applications. Inverse Probl., 19 , R1R26.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., Scarchilli G. , Chadrasekar V. , and Bringi V. , 2000: Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci., 57 , 34063413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, A. W., 1975: An approximation for shapes of large drops. J. Appl. Meteor., 14 , 15781583.

  • Hanssen, R. F., 2001: Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic Publishers, 308 pp.

  • Hauser, D., and Amayenc P. , 1981: A new method for deducing hydrometeor-size distributions and vertical air motions from Doppler radar measurements at vertical incidence. J. Appl. Meteor., 20 , 547555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heijnen, S. H., Ligthart L. P. , and Russchenberg H. W. J. , 2000: First measurements with TARA; An S-band Transportable Atmospheric Radar. Phys. Chem. Earth, 25B , 995998.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Clark K. A. , and Tokay A. , 2002: X-band polarimetric radar measurements of rainfall. J. Appl. Meteor., 41 , 941952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., Sato T. , Yamamoto M. , Kato S. , Tsuda T. , and Fukao S. , 1989: Errors in the determination of wind speed by Doppler radar. J. Atmos. Oceanic Technol., 6 , 235242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., and Beard K. , 1970: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 96 , 247256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and Pitter R. L. , 1971: A semi-empirical determination of the shape of cloud and raindrops. J. Atmos. Sci., 28 , 8694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rust, B. W., 2001: Fitting nature’s basic functions. Part II: Estimating uncertainties and testing hypotheses. Comput. Sci. Eng., 6 , 6064.

    • Search Google Scholar
    • Export Citation
  • Rust, B., 2003: Fitting nature’s basic functions. Part IV: The variable projection algorithm. Comput. Sci. Eng., 5 , 7479.

  • Ryzhkov, A. V., and Schuur T. J. , 2003: Effective shape of raindrops: Polarimetric radar perspective. Proc. IGARSS, Toulouse, France, IEEE GRSS, CD-ROM.

  • Seliga, T. A., and Bringi V. N. , 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15 , 6976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and Bringi V. N. , 2005: Drop axis ratios from a 2D video disdrometer. J. Atmos. Oceanic Technol., 22 , 966978.

  • Twomey, S., 1977: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements. Elsevier Scientific Publishing, 243 pp.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2002: Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations. Radio Sci., 37 , 8-18-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 38 3
PDF Downloads 82 19 1