Incremental Analysis Update Implementation into a Sequential Ocean Data Assimilation System

Y. Ourmières LEGI, Grenoble, France

Search for other papers by Y. Ourmières in
Current site
Google Scholar
PubMed
Close
,
J-M. Brankart LEGI, Grenoble, France

Search for other papers by J-M. Brankart in
Current site
Google Scholar
PubMed
Close
,
L. Berline LEGI, Grenoble, France

Search for other papers by L. Berline in
Current site
Google Scholar
PubMed
Close
,
P. Brasseur LEGI, Grenoble, France

Search for other papers by P. Brasseur in
Current site
Google Scholar
PubMed
Close
, and
J. Verron LEGI, Grenoble, France

Search for other papers by J. Verron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study deals with the enhancement of a sequential assimilation method applied to an ocean general circulation model (OGCM). A major drawback of sequential assimilation methods is the time discontinuity of the solution resulting from intermittent corrections of the model state. The data analysis step can induce shocks in the model restart phase, causing spurious high-frequency oscillations and data rejection. A method called Incremental Analysis Update (IAU) is now recognized to efficiently tackle these problems.

In the present work, an IAU-type method is implemented into an intermittent data assimilation system using a low-rank Kalman filter [Singular Evolutive Extended Kalman (SEEK)] in the case of an OGCM with a 1/3° North Atlantic grid. A 1-yr (1993) experiment has been conducted for different setups in order to evaluate the impact of the IAU scheme. Results from all of the different tests are compared with a specific interest in high-frequency output behaviors and solution consistency. The improvements brought up by the IAU implementation, such as the disappearance of spurious high-frequency oscillations and the time continuity of the solution, are shown. An overall assessment of the impact of this new approach on the assimilated runs is discussed. Advantages and drawbacks of the IAU method are pointed out.

Corresponding author address: Dr. Yann Ourmières, LEGI, UMR 5519 CNRS, BP53X, F-38041 Grenoble CEDEX, France. Email: yann.ourmieres@hmg.inpg.fr

Abstract

This study deals with the enhancement of a sequential assimilation method applied to an ocean general circulation model (OGCM). A major drawback of sequential assimilation methods is the time discontinuity of the solution resulting from intermittent corrections of the model state. The data analysis step can induce shocks in the model restart phase, causing spurious high-frequency oscillations and data rejection. A method called Incremental Analysis Update (IAU) is now recognized to efficiently tackle these problems.

In the present work, an IAU-type method is implemented into an intermittent data assimilation system using a low-rank Kalman filter [Singular Evolutive Extended Kalman (SEEK)] in the case of an OGCM with a 1/3° North Atlantic grid. A 1-yr (1993) experiment has been conducted for different setups in order to evaluate the impact of the IAU scheme. Results from all of the different tests are compared with a specific interest in high-frequency output behaviors and solution consistency. The improvements brought up by the IAU implementation, such as the disappearance of spurious high-frequency oscillations and the time continuity of the solution, are shown. An overall assessment of the impact of this new approach on the assimilated runs is discussed. Advantages and drawbacks of the IAU method are pointed out.

Corresponding author address: Dr. Yann Ourmières, LEGI, UMR 5519 CNRS, BP53X, F-38041 Grenoble CEDEX, France. Email: yann.ourmieres@hmg.inpg.fr

Save
  • Alves, O., Balmaseda M. A. , Anderson D. , and Stockdale T. , 2004: Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Quart. J. Roy. Meteor. Soc., 130B , 647667.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and Delecluse P. , 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J. Phys. Oceanogr., 23 , 13631388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., Takacs L. L. , DaSilva A. M. , and Levina D. , 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124 , 12561271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brankart, J-M., Testut C-E. , Brasseur P. , and Verron J. , 2003: Implementation of a multivariate data assimilation scheme for isopycnic coordinate ocean models: Application to a 1993-96 hindcast of the North Atlantic Ocean circulation. J. Geophys. Res., 108 .3074, doi:10.1029/2001JC001198.

    • Search Google Scholar
    • Export Citation
  • Brasseur, P., Ballabrera J. , and Verron J. , 1999: Assimilation of altimetric observations in a primitive equation model of the Gulf Stream using a Singular Evolutive Extended Kalman filter. J. Mar. Syst., 22 , 269294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., Van Leeuwen P. J. , and Evensen G. , 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 17191724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., Chepurin G. , Cao X. H. , and Giese B. , 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30 , 294309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J., and Rosati A. , 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19 , 13331347.

  • DeWeaver, E., and Nigam S. , 1997: Dynamics of zonal-mean flow assimilation and implications for winter circulation anomalies. J. Atmos. Sci., 54 , 17581775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., Le Traon P. , and Reverdin G. , 2000: Global high-resolution mapping of ocean circulation from Topex/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 , C8. 1947719498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , C5. 1014310162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., and Malanotte-Rizzoli P. , 1995: An approximate Kalman filter for ocean data assimilation: An example with an idealized Gulf Stream model. J. Geophys. Res., 100 , C4. 67776793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Kinter J. L. , and Schopf P. S. , 2002: Ocean data assimilation using intermittent analyses and continuous model error correction. Adv. Atmos. Sci., 19 , 965993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database, NOAA Atlas NESDIS 18, 346 pp.

  • Madec, G., Delecluse P. , Imbard M. , and Levy C. , 1998: OPA8.1 ocean general circulation model reference manual. Notes du pôle de modélisation IPSL 11, 92 pp. [Available online at http://www.ipsl.jussieu.fr/modelisation/note11.html.].

  • Pacanowski, R. C., Dixon K. , and Rosati A. , 1993: The GFDL Modular Ocean Model user guide version 1.0. GFDL Ocean Group Tech. Rep. 2, 46 pp.

  • Pham, D. T., Verron J. , and Roubaud M. C. , 1998: A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst., 16 , 323340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polavarapu, S., Ren S. H. , Clayton A. M. , Sankey D. , and Rochon Y. , 2004: On the relationship between incremental analysis updating and incremental digital filtering. Mon. Wea. Rev., 132 , 24952502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosati, A., Gudgel R. , and Miyakoda K. , 1995: Decadal analysis produced from an ocean data assimilation system. Mon. Wea. Rev., 123 , 22062228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., Rood R. B. , and Pfaendtner J. , 1993: An assimilated dataset for earth science applications. Bull. Amer. Meteor. Soc., 74 , 23312342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testut, C. E., Brasseur P. , Brankart J. M. , and Verron J. , 2003: Assimilation of sea-surface temperature and altimetric observations during 1992-1993 into an eddy permitting primitive equation model of the North Atlantic Ocean. J. Mar. Syst., 40–41 , 291316.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., Vialard J. , and Anderson D. L. T. , 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: Formulation, internal diagnostics, and consistency checks. Mon. Wea. Rev., 131 , 13601378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Guo R. , Cohn J. , Navon I. M. , and Yang Y. , 2003: The GEOS-3 retrospective data assimilation system: The 6-hour lag case. Mon. Wea. Rev., 131 , 21292150.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 392 183 17
PDF Downloads 182 47 1