Ocean Wave Directional Spectra Estimation from an HF Ocean Radar with a Single Antenna Array: Methodology

Yukiharu Hisaki Department of Physics and Earth Sciences, University of the Ryukyus, Nishihara-cho, Nakagami-gun, Okinawa, Japan

Search for other papers by Yukiharu Hisaki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A method to estimate ocean wave directional spectra using a high-frequency (HF) ocean radar was developed. The governing equations of wave spectra are integral equations of first- and second-order radar cross sections, the wave energy balance equation, and the continuity equation of surface winds. The parameterization of the source function is the same as that in WAM. Furthermore, the method uses the constraints that wave spectral values are smooth in both wave frequency and direction and that the propagation terms are small. The unknowns to be estimated are surface wind vectors at radial grids whose centers are the radar position, and wave spectral values at radial and wave frequency–direction grids. The governing equations are discretized in the radial and wave frequency–direction grids and are converted into a nonlinear minimization problem. Identical twin experiments showed that the present method can estimate wave spectra and dynamically extrapolate wave spectra, even in an inhomogeneous wave field.

Corresponding author address: Yukiharu Hisaki, Dept. of Physics and Earth Sciences, University of the Ryukyus, 1 Aza-Senbaru, Nishihara-cho, Nakagami-gun, Okinawa 903-0213, Japan. Email: hisaki@sci.u-ryukyu.ac.jp

Abstract

A method to estimate ocean wave directional spectra using a high-frequency (HF) ocean radar was developed. The governing equations of wave spectra are integral equations of first- and second-order radar cross sections, the wave energy balance equation, and the continuity equation of surface winds. The parameterization of the source function is the same as that in WAM. Furthermore, the method uses the constraints that wave spectral values are smooth in both wave frequency and direction and that the propagation terms are small. The unknowns to be estimated are surface wind vectors at radial grids whose centers are the radar position, and wave spectral values at radial and wave frequency–direction grids. The governing equations are discretized in the radial and wave frequency–direction grids and are converted into a nonlinear minimization problem. Identical twin experiments showed that the present method can estimate wave spectra and dynamically extrapolate wave spectra, even in an inhomogeneous wave field.

Corresponding author address: Yukiharu Hisaki, Dept. of Physics and Earth Sciences, University of the Ryukyus, 1 Aza-Senbaru, Nishihara-cho, Nakagami-gun, Okinawa 903-0213, Japan. Email: hisaki@sci.u-ryukyu.ac.jp

Save
  • Banner, M. L., and Young L. R. , 1994: Modeling spectral dissipation in the evolution of wind waves. Part I: Assessment of existing model performance. J. Phys. Oceanogr, 24 , 15501571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., 1971: Dependence of second-order Doppler sidebands in HF sea echo upon sea state. G-AP Int. Symp. Dig, 194197.

  • Barrick, D. E., 1980: Accuracy of parameter extraction from sample-averaged sea-echo Doppler spectra. IEEE Trans. Antennas Propag, 28 , 111.

  • Bender, L. C., 1996: Modification of the physics and numerics in a third-generation ocean wave model. J. Atmos. Oceanic Technol, 13 , 726750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Valk, C., Reniers A. , Atanga J. , Vizinho A. , and Vogelzang J. , 1999: Monitoring surface waves in coastal waters by integrating HF radar measurement and modelling. Coastal Eng, 37 , 431453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewans, K. C., 1998: Observations of the directional spectrum of fetch-limited waves. J. Phys. Oceanogr, 28 , 495512.

  • Harlan, J. A., and Georges T. M. , 1994: An empirical relation between ocean-surface wind direction and the Bragg line ratio of HF radar sea echo spectra. J. Geophys. Res, 99 , 79717978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashimoto, N., and Tokuda M. , 1999: A Bayesian approach for estimation of directional wave spectra with HF radar. Coastal Eng. J, 41 , 137149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashimoto, N., Wyatt L. R. , and Kojima S. , 2003: Verification of a Bayesian method for estimating directional spectra from HF radar surface backscatter. Coastal Eng. J, 45 , 255274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum, Part 1. General theory. J. Fluid Mech, 12 , 481500.

  • Hasselmann, S., Hasselmann K. , Allender J. A. , and Barnet T. P. , 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum. Part II: Parameterization of the nonlinear transfer for application in wave models. J. Phys. Oceanogr, 15 , 13781391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hisaki, Y., 1996: Nonlinear inversion of the integral equation to estimate ocean wave spectra from HF radar. Radio Sci, 31 , 2539.

  • Hisaki, Y., 1999: Correction of amplitudes of Bragg lines in the sea echo Doppler spectrum of an ocean radar. J. Atmos. Oceanic Technol, 16 , 14161433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hisaki, Y., 2002: Short-wave directional properties in the vicinity of atmospheric and oceanic fronts. J. Geophys. Res, 107 .3188, doi:10.1029/2001JC000912.

    • Search Google Scholar
    • Export Citation
  • Hisaki, Y., 2004: Short-wave directional distribution for first-order Bragg echoes of the HF ocean radars. J. Atmos. Oceanic Technol, 21 , 105121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hisaki, Y., 2005: Ocean wave directional spectra estimation from an HF ocean radar with a single antenna array: Observation. J. Geophys. Res, 110 .C11004, doi:10:1029/2005JC002881.

    • Search Google Scholar
    • Export Citation
  • Hisaki, Y., and Tokuda M. , 2001: VHF and HF sea-echo Doppler spectrum for a finite illuminated area. Radio Sci, 3 , 425440.

  • Hisaki, Y., and Naruke T. , 2003: Horizontal variability of near-inertial oscillations associated with the passage of a typhoon. J. Geophys. Res, 108 .3382, doi:10.1029/2002JC001683.

    • Search Google Scholar
    • Export Citation
  • Hisaki, Y., Fujiie W. , Tokeshi T. , Sato K. , and Fujii S. , 2001: Surface current variability east of Okinawa Island obtained from remotely sensed and in-situ observational data. J. Geophys. Res, 106 , 3105731073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Wang D. W. , Walsh E. J. , Krabill W. B. , and Swift R. N. , 2000: Airborne measurements of the wavenumber spectra of ocean surface waves. Part II: Directional distribution. J. Phys. Oceanogr, 30 , 27682787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komen, G. J., Hasselmann K. , and Hasselmann K. , 1984: On the existence of a fully developed wind–sea spectrum. J. Phys. Oceanogr, 14 , 12711285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipa, B. J., and Barrick D. E. , 1982: CODAR measurements of ocean surface parameters at ARSLOE—Preliminary results. IEEE Oceans 82 Conf. Rec, 901906.

    • Search Google Scholar
    • Export Citation
  • Lipa, B. J., and Barrick D. E. , 1986: Extraction of sea state from HF radar sea echo: Mathematical theory and modeling. Radio Sci, 21 , 81100.

  • Snyder, R. L., Dobson F. W. , Elliott J. A. , and Long R. B. , 1981: Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech, 102 , 159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takeoka, H., Tanaka Y. , Ohno Y. , Hisaki Y. , Nadai A. , and Kuroiwa H. , 1995: Observation of the Kyucho in the Bungo Channel by HF radar. J. Oceanogr, 51 , 699711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, L., 1992: Effects of numerics on the physics in a third-generation wind-wave model. J. Phys. Oceanogr, 22 , 10951111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WAMDI Group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr, 18 , 17751810.

  • Wang, D. W., and Hwang P. A. , 2001: Evolution of the bimodal directional distribution of ocean waves. J. Phys. Oceanogr, 31 , 12001221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1980: Wind-stress coefficients over sea surface near neutral conditions—A revisit. J. Phys. Oceanogr, 10 , 727740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., 1990: A relaxation method for integral inversion applied to HF radar measurement of the ocean wave directional spectra. Int. J. Remote Sens, 11 , 14811494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., 2002: An evaluation of wave parameters measured using a single HF radar system. Can. J. Remote Sens, 28 , 205218.

  • Young, I. R., Verhagen L. A. , and Banner M. L. , 1995: A note on the bimodal directional spreading of fetch-limited wind waves. J. Geophys. Res, 100 , 773778.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 681 437 125
PDF Downloads 199 39 4