Independent Evaluation of the Ability of Spaceborne Radar and Lidar to Retrieve the Microphysical and Radiative Properties of Ice Clouds

Robin J. Hogan Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Robin J. Hogan in
Current site
Google Scholar
PubMed
Close
,
Malcolm E. Brooks Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Malcolm E. Brooks in
Current site
Google Scholar
PubMed
Close
,
Anthony J. Illingworth Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Anthony J. Illingworth in
Current site
Google Scholar
PubMed
Close
,
David P. Donovan Royal Dutch Meteorological Institute, De Bilt, Netherlands

Search for other papers by David P. Donovan in
Current site
Google Scholar
PubMed
Close
,
Claire Tinel Centre d'Étude des Environnements Terrestre et Planétaires, Institut Pierre Simon Laplace, Paris, France

Search for other papers by Claire Tinel in
Current site
Google Scholar
PubMed
Close
,
Dominique Bouniol Centre d'Étude des Environnements Terrestre et Planétaires, Institut Pierre Simon Laplace, Paris, France

Search for other papers by Dominique Bouniol in
Current site
Google Scholar
PubMed
Close
, and
J. Pedro V. Poiares Baptista European Space Agency, Noordwijk, Netherlands

Search for other papers by J. Pedro V. Poiares Baptista in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The combination of radar and lidar in space offers the unique potential to retrieve vertical profiles of ice water content and particle size globally, and two algorithms developed recently claim to have overcome the principal difficulty with this approach—that of correcting the lidar signal for extinction. In this paper “blind tests” of these algorithms are carried out, using realistic 94-GHz radar and 355-nm lidar backscatter profiles simulated from aircraft-measured size spectra, and including the effects of molecular scattering, multiple scattering, and instrument noise. Radiation calculations are performed on the true and retrieved microphysical profiles to estimate the accuracy with which radiative flux profiles could be inferred remotely. It is found that the visible extinction profile can be retrieved independent of assumptions on the nature of the size distribution, the habit of the particles, the mean extinction-to-backscatter ratio, or errors in instrument calibration. Local errors in retrieved extinction can occur in proportion to local fluctuations in the extinction-to-backscatter ratio, but down to 400 m above the height of the lowest lidar return, optical depth is typically retrieved to better than 0.2. Retrieval uncertainties are greater at the far end of the profile, and errors in total optical depth can exceed 1, which changes the shortwave radiative effect of the cloud by around 20%. Longwave fluxes are much less sensitive to errors in total optical depth, and may generally be calculated to better than 2 W m−2 throughout the profile. It is important for retrieval algorithms to account for the effects of lidar multiple scattering, because if this is neglected, then optical depth is underestimated by approximately 35%, resulting in cloud radiative effects being underestimated by around 30% in the shortwave and 15% in the longwave. Unlike the extinction coefficient, the inferred ice water content and particle size can vary by 30%, depending on the assumed mass–size relationship (a problem common to all remote retrieval algorithms). However, radiative fluxes are almost completely determined by the extinction profile, and if this is correct, then errors in these other parameters have only a small effect in the shortwave (around 6%, compared to that of clear sky) and a negligible effect in the longwave.

& Current affiliation: Centre National d'Etudes Spatiales, Toulouse, France

** Current affiliation: Met Office, Exeter, United Kingdom

Corresponding author address: Robin J. Hogan, Department of Meteorology, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: r.j.hogan@reading.ac.uk

Abstract

The combination of radar and lidar in space offers the unique potential to retrieve vertical profiles of ice water content and particle size globally, and two algorithms developed recently claim to have overcome the principal difficulty with this approach—that of correcting the lidar signal for extinction. In this paper “blind tests” of these algorithms are carried out, using realistic 94-GHz radar and 355-nm lidar backscatter profiles simulated from aircraft-measured size spectra, and including the effects of molecular scattering, multiple scattering, and instrument noise. Radiation calculations are performed on the true and retrieved microphysical profiles to estimate the accuracy with which radiative flux profiles could be inferred remotely. It is found that the visible extinction profile can be retrieved independent of assumptions on the nature of the size distribution, the habit of the particles, the mean extinction-to-backscatter ratio, or errors in instrument calibration. Local errors in retrieved extinction can occur in proportion to local fluctuations in the extinction-to-backscatter ratio, but down to 400 m above the height of the lowest lidar return, optical depth is typically retrieved to better than 0.2. Retrieval uncertainties are greater at the far end of the profile, and errors in total optical depth can exceed 1, which changes the shortwave radiative effect of the cloud by around 20%. Longwave fluxes are much less sensitive to errors in total optical depth, and may generally be calculated to better than 2 W m−2 throughout the profile. It is important for retrieval algorithms to account for the effects of lidar multiple scattering, because if this is neglected, then optical depth is underestimated by approximately 35%, resulting in cloud radiative effects being underestimated by around 30% in the shortwave and 15% in the longwave. Unlike the extinction coefficient, the inferred ice water content and particle size can vary by 30%, depending on the assumed mass–size relationship (a problem common to all remote retrieval algorithms). However, radiative fluxes are almost completely determined by the extinction profile, and if this is correct, then errors in these other parameters have only a small effect in the shortwave (around 6%, compared to that of clear sky) and a negligible effect in the longwave.

& Current affiliation: Centre National d'Etudes Spatiales, Toulouse, France

** Current affiliation: Met Office, Exeter, United Kingdom

Corresponding author address: Robin J. Hogan, Department of Meteorology, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: r.j.hogan@reading.ac.uk

Save
  • Ansmann, A., Wandinger U. , Riebesell M. , Weitkamp C. , and Michaelis W. , 1992: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt, 33 , 71137131.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., Watts P. D. , and Francis P. N. , 1999: Testing the coherence of cirrus microphysical and bulk properties retrieved from dual-viewing multispectral satellite radiance measurements. J. Geophys. Res, 104 , 3167331683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and Francis P. N. , 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol, 12 , 410414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., Illingworth A. J. , Heymsfield A. J. , McFarquhar G. M. , Browning K. A. , and Gosset M. , 1995: The role of spaceborne millimeter-wave radar in the global monitoring of ice-cloud. J. Appl. Meteor, 34 , 23462366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., 2003: Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurements. J. Geophys. Res, 108 .4573, doi:10.1029/2003JD003469.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., and van Lammeren A. C. A. P. , 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations—1. Theory and examples. J. Geophys. Res, 106 , 2742527448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and Slingo A. , 1996: Studies with a flexible new radiation code—1. Choosing a configuration for a large scale model. Quart. J. Roy. Meteor. Soc, 122 , 689719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 1998: A practical model for the calculation of multiply scattered lidar returns. Appl. Opt, 37 , 24642472.

  • European Space Agency, 2001: EarthCARE—Earth Clouds, Aerosols and Radiation Explorer. ESA/ESTEC ESA SP-1257 (1)—The five candidate Earth Explorer Core Missions, 130 pp.

  • European Space Agency, 2004: EarthCARE—Earth Clouds, Aerosols and Radiation Explorer. ESA/ESTEC ESA SP-1279(1)—The six candidate Earth Explorer Missions, 60 pp.

  • Field, P. R., 2000: Bimodal ice spectra in frontal clouds. Quart. J. Roy. Meteor. Soc, 126 , 379392.

  • Foot, J. S., 1988: Some observations of the optical properties of clouds—2. Cirrus. Quart. J. Roy. Meteor. Soc, 114 , 145164.

  • Francis, P. N., Hignett P. , and Macke A. , 1998: The retrieval of cirrus cloud properties from aircraft multi-spectral reflectance measurements during EUCREX'93. Quart. J. Roy. Meteor. Soc, 124 , 12731291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, M., Koelemeijer R. B. A. , and Stammes P. , 1998: Scattering matrices of imperfect hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 60 , 301308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Baumgardner D. G. , 1985: Summary of workshop on processing 2-D probe data. Bull. Amer. Meteor. Soc, 66 , 437440.

  • Hogan, R. J., and Illingworth A. J. , 1999: The potential of spaceborne dual-wavelength radar to make global measurements of cirrus clouds. J. Atmos. Oceanic Technol, 16 , 518531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and Illingworth A. J. , 2003: Parameterizing ice cloud inhomogeneity and the overlap of inhomogeneities using cloud radar data. J. Atmos. Sci, 60 , 756767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Illingworth A. J. , and Sauvageot H. , 2000: Measuring crystal size in cirrus using 35- and 94-GHz radars. J. Atmos. Oceanic Technol, 17 , 2737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Francis P. N. , Flentje H. , Illingworth A. J. , Quante M. , and Pelon J. , 2003: Characteristics of mixed-phase clouds—1. Lidar, radar and aircraft observations from CLARE'98. Quart. J. Roy. Meteor. Soc, 129 , 20892116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Behera M. D. , O'Connor E. J. , and Illingworth A. J. , 2004: Estimating the global distribution of supercooled liquid water clouds using spaceborne lidar. Geophys. Res. Lett, 32 .L05106, doi:10.1029/2003GL018977.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Mittermaier M. P. , and Illingworth A. J. , 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor, in press.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Blackman T. M. , 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor, 41 , 287297.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., Stephens G. L. , Eberhart W. L. , and Uttal T. , 1993: A method for determining cirrus cloud particle sizes using lidar and radar backscatter techniques. J. Appl. Meteor, 32 , 10741082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1985: Lidar inversion with variable backscatter/extinction ratios. Appl. Opt, 24 , 16381643.

  • Liou, K-N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev, 114 , 11671199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Sassen K. , Kinne S. , and Ackerman T. P. , 1998: An examination of cirrus cloud characteristics using data from millimeter wave radar and lidar: The 24 April SUCCESS case study. Geophys. Res. Lett, 25 , 11331136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Korolev A. V. , and Heymsfield A. J. , 2002: Profiling cloud ice mass and particle characteristic size from Doppler radar measurements. J. Atmos. Oceanic Technol, 19 , 10031018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., Fenn R. W. , Selby J. E. A. , Volz F. E. , and Garing J. S. , 1972: Optical properties of the atmosphere. 3d ed. Air Force Cambridge Research Laboratories Rep. AFCRL72-0497, 108 pp.

  • McFarquhar, G. M., and Heymsfield A. J. , 1997: Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX. J. Atmos. Sci, 54 , 21872200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., Chai S. K. , Liu Y. , Heymsfield A. J. , and Dong Y. , 1996a: Modeling cirrus clouds. Part I: Treatment of bimodal size spectra and case study analysis. J. Atmos. Sci, 53 , 29522966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., Macke A. , and Liu Y. , 1996b: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci, 53 , 29672988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O'Connor, E. J., Hogan R. J. , and Illingworth A. J. , 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor, 44 , 1427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1981: Remote soundings of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns. J. Atmos. Sci, 38 , 156167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, A., and Schrecker H. M. , 1982: On the shortwave radiative properties of stratiform water clouds. Quart. J. Roy. Meteor. Soc, 108 , 407426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci, 35 , 21232132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat Mission and the A-Train. Bull. Amer. Meteor. Soc, 83 , 17711790.

  • Testud, J., Oury S. , Dou X. , Ameyenc P. , and Black R. , 2001: The concept of normalized distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor, 40 , 11181140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L., Cartwright J. C. , and Wareing D. P. , 1990: Lidar observations of the horizontal orientation of ice crystals in cirrus clouds. Tellus, 42B , 211216.

    • Search Google Scholar
    • Export Citation
  • Tinel, C., 2002: Restitution des propriétés microphysiques et radiatives des nuages froids et mixtes à partir des données du système RALI (radar/lidar). Ph.D. thesis, 237 pp.

  • Tinel, C., Testud J. , Hogan R. J. , Protat A. , Delanoe J. , and Bouniol D. , 2005: The retrieval of ice cloud properties from cloud radar and lidar synergy. J. Appl. Meteor, 44 , 860875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, J. M., Geddes N. J. , Flamant P. H. , and Flesia C. , 1998: Establishment of a backscatter coefficient and atmospheric database. DERA/EL/ISET/CR980129/1.0, ESA Contract 12510/97/NL/RE, 110 pp.

  • Wang, Z., and Sassen K. , 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part I: Algorithm description and comparison with in situ data. J. Appl. Meteor, 41 , 218229.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 596 235 35
PDF Downloads 220 65 3