Raman Lidar Measurements during the International H2O Project. Part I: Instrumentation and Analysis Techniques

D. N. Whiteman NASA GSFC, Greenbelt, Maryland

Search for other papers by D. N. Whiteman in
Current site
Google Scholar
PubMed
Close
,
B. Demoz NASA GSFC, Greenbelt, Maryland

Search for other papers by B. Demoz in
Current site
Google Scholar
PubMed
Close
,
K. Rush NASA GSFC, Greenbelt, Maryland

Search for other papers by K. Rush in
Current site
Google Scholar
PubMed
Close
,
G. Schwemmer NASA GSFC, Greenbelt, Maryland

Search for other papers by G. Schwemmer in
Current site
Google Scholar
PubMed
Close
,
B. Gentry NASA GSFC, Greenbelt, Maryland

Search for other papers by B. Gentry in
Current site
Google Scholar
PubMed
Close
,
P. Di Girolamo DIFA, University of Basilicata, Potenza, Italy

Search for other papers by P. Di Girolamo in
Current site
Google Scholar
PubMed
Close
,
J. Comer Science Systems Applications, Inc., Lanham, Maryland

Search for other papers by J. Comer in
Current site
Google Scholar
PubMed
Close
,
I. Veselovskii University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by I. Veselovskii in
Current site
Google Scholar
PubMed
Close
,
K. Evans University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by K. Evans in
Current site
Google Scholar
PubMed
Close
,
S. H. Melfi University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by S. H. Melfi in
Current site
Google Scholar
PubMed
Close
,
Z. Wang University of Wyoming, Laramie, Wyoming

Search for other papers by Z. Wang in
Current site
Google Scholar
PubMed
Close
,
M. Cadirola Ecotronics LLC, Clarksburg, Maryland

Search for other papers by M. Cadirola in
Current site
Google Scholar
PubMed
Close
,
B. Mielke Licel Corporation, Berlin, Germany

Search for other papers by B. Mielke in
Current site
Google Scholar
PubMed
Close
,
D. Venable Howard University, Washington, D.C

Search for other papers by D. Venable in
Current site
Google Scholar
PubMed
Close
, and
T. Van Hove University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by T. Van Hove in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The NASA Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP), which occurred in May and June 2002 in the midwestern part of the United States. The SRL received extensive optical modifications prior to and during the IHOP campaign that added new measurement capabilities and enabled unprecedented daytime water vapor measurements by a Raman lidar system. Improvements were also realized in nighttime upper-tropospheric water vapor measurements. The other new measurements that were added to the SRL for the IHOP deployment included rotational Raman temperature, depolarization, cloud liquid water, and cirrus cloud ice water content. In this first of two parts, the details of the operational configuration of the SRL during IHOP are provided along with a description of the analysis and calibration procedures for water vapor mixing ratio, aerosol depolarization, and cirrus cloud extinction-to-backscatter ratio. For the first time, a Raman water vapor lidar calibration is performed, taking full account of the temperature sensitivity of water vapor and nitrogen Raman scattering. Part II presents case studies that permit the daytime and nighttime error statistics to be quantified.

Corresponding author address: D. N. Whiteman, NASA GSFC, Code 613.1, Building 33, Room D404, Greenbelt, MD 20771. Email: david.n.whiteman@nasa.gov

Abstract

The NASA Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP), which occurred in May and June 2002 in the midwestern part of the United States. The SRL received extensive optical modifications prior to and during the IHOP campaign that added new measurement capabilities and enabled unprecedented daytime water vapor measurements by a Raman lidar system. Improvements were also realized in nighttime upper-tropospheric water vapor measurements. The other new measurements that were added to the SRL for the IHOP deployment included rotational Raman temperature, depolarization, cloud liquid water, and cirrus cloud ice water content. In this first of two parts, the details of the operational configuration of the SRL during IHOP are provided along with a description of the analysis and calibration procedures for water vapor mixing ratio, aerosol depolarization, and cirrus cloud extinction-to-backscatter ratio. For the first time, a Raman water vapor lidar calibration is performed, taking full account of the temperature sensitivity of water vapor and nitrogen Raman scattering. Part II presents case studies that permit the daytime and nighttime error statistics to be quantified.

Corresponding author address: D. N. Whiteman, NASA GSFC, Code 613.1, Building 33, Room D404, Greenbelt, MD 20771. Email: david.n.whiteman@nasa.gov

Save
  • Ansmann, A., Riebesell M. , Wandinger U. , Weitkamp C. , Voss E. , Lhamann W. , and Michaelis W. , 1992: Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio. Appl. Phys, B55 , 1828.

    • Search Google Scholar
    • Export Citation
  • Avila, G., Fernandez J. M. , Mate B. , Tejeda G. , and Montero S. , 1999: Rovibrational Raman cross sections of water vapor in the OH stretching region. J. Mol. Spectr, 196 , 7792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Nakamura T. , 2002: Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature. Opt. Express, 10 , 805817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bisson, S. E., Goldsmith J. E. M. , and Mitchell M. G. , 1999: Narrow-band, narrow-field-of-view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements. Appl. Opt, 38 , 18411849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, J., Rocken C. , and Liljegren J. , 2003: Comparisons of line-of sight water vapor observations using the global positioning system and a pointing microwave radiometer. J. Atmos. Oceanic Technol, 20 , 606612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooney, J., Petri K. , and Salik A. , 1985: Measurements of high-resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar. Appl. Opt, 24 , 104108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., Marchese R. , Whiteman D. N. , and Demoz B. B. , 2004: Rotational Raman lidar measurements of atmospheric temperature in the UV. Geophys. Res. Lett, 31 .L01106, doi:10.1029/2003GL018342.

    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., and Wiscombe W. J. , 1996: The spectral radiance experiment (SPECTRE): Project description and sample results. Bull. Amer. Meteor. Soc, 77 , 19671985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 1998: Practical model for the calculation of multiply scattered lidar returns. Appl. Opt, 37 , 24642472.

  • Feltz, W. F., Smith W. L. , Knuteson R. O. , Revercomb H. E. , Woolf H. M. , and Howell H. B. , 1998: Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor, 37 , 857875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R., and Coauthors, 2000: Comparison of aerosol optical properties and water vapor among ground and airborne lidars and sunphotometers during TARFOX. J. Geophys. Res, 105 , D8. 99179933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentry, B. M., Chen H. , Li S. , Mathur S. , Dobler J. , Hasselbrack W. , and Comer J. , 2004: Wind profiles obtained with a molecular direct detection Doppler LIDAR during IHOP_2002. Proc. 22d Int. Laser Radar Conf. (ILRC2004), Matera, Italy, European Space Agency, ESA SP-561, 731–733.

  • Goldsmith, J. E. M., and Ferrare R. A. , 1994: Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor. Proc. 16th Int. Laser Radar Conf., Part 2, NASA Conf. Publication 3158, 667–670.

  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ, 66 , 116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Measures, R. M., 1984: Laser Remote Sensing Fundamentals and Applications. Wiley-Interscience, 510 pp.

  • Reichardt, J., Baumgart R. , and McGee T. J. , 2003: Three-signal method for accurate measurements of depolarization ratio with lidar. Appl. Opt, 42 , 49094913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renaut, D., and Capitini R. , 1988: Boundary layer water vapor probing with a solar-blind Raman lidar: Validations, meteorological observations and prospects. J. Atmos. Oceanic Technol, 5 , 585601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renaut, D., Pourny J. C. , and Capitini R. , 1980: Daytime Raman-lidar measurements of water-vapor. Opt. Lett, 5 , 233235.

  • Russo, F., Whiteman D. N. , Demoz B. , Wang Z. , Veselovskii I. , and Hoff R. , 2004: Development of Raman lidar techniques to address the aerosol indirect effect: The liquid water content of clouds. Proc. 22d Int. Laser Radar Conf., Matera, Italy, European Space Agency, Vol. I, ESA SP-561.

  • Schwemmer, G., Miller D. O. , Wilkerson T. D. , and Lee S. , 2004: Lidar data products enabled by conical scanning: HARLIE measurements during IHOP. Proc. 22d Int. Laser Radar Conf., Matera, Italy, European Space Agency, Vol. I, ESA SP-561, 17–20.

  • Sherlock, V., Hauchecorne A. , and Lenoble J. , 1999: Methodology for the independent calibration of Raman backscatter water-vapor lidar systems. Appl. Opt, 38 , 58165837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Ferrare R. A. , Brasseur L. A. H. , and Feltz W. F. , 2002: Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar. J. Atmos. Oceanic Technol, 19 , 3750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, G., Wareing D. P. , Thomas L. , and Mitev V. , 1988: Humidity measurements in the free troposphere using Raman backscatter. Quart. J. Roy. Meteor. Soc, 114 , 14711484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandinger, U., 1998: Experimental determination of the lidar overlap profile with Raman lidar. Appl. Opt, 37 , 417427.

  • Wang, J., Carlson D. J. , Parsons D. B. , Hock T. F. , Lauritsen D. , Cole H. L. , Beierle K. , and Chamberlain E. , 2003: Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication. Geophys. Res. Lett, 30 .1860, doi:10.1029/2003GL016985.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., Whiteman D. N. , Demoz B. B. , and Veselovskii I. , 2004: A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar. Geophys. Res. Lett, 31 .L15101, doi:10.1029/2004GL020004.

    • Search Google Scholar
    • Export Citation
  • Ware, R. H., and Coauthors, 2000: SuomiNet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc, 81 , 677694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., 2003a: Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Appl. Opt, 42 , 25712592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., 2003b: Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols. Appl. Opt, 42 , 25932608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Melfi S. H. , 1999: Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar. J. Geophys. Res, 104 , 3141131419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Melfi S. H. , and Ferrare R. A. , 1992: Raman lidar system for the measurement of water vapor and aerosols in the earth's atmosphere. Appl. Opt, 31 , 30683082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2001a: Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie. J. Geophys. Res, 106 , 52115225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Schwemmer G. , Berkoff T. , Plotkin H. , Ramos-Izquierdo L. , and Pappalardo G. , 2001b: Performance modeling of an airborne Raman water vapor lidar. Appl. Opt, 40 , 375390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Melfi S. H. , Ferrare R. A. , and Evans K. D. , 1994: Daytime measurements of water vapor mixing ratio using Raman scattering—Techniques and assessment. Extended Abstracts, 17th Int. Laser Radar Conf., Sendai, Japan, 137–140.

  • Whiteman, D. N., and Coauthors, 2005: The AIRS Water Vapor Experiment (AWEX-G) and its relationship to aqua validation. J. Geophys. Res, in press.

  • Whiteman, D. N., and Coauthors, 2006: Raman water vapor lidar measurements during the International H2O Project. Part II: Instrument comparisons and case studies. J. Atmos. Oceanic Technol, 23 , 170183.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 613 185 21
PDF Downloads 377 143 11