Raman Lidar Measurements during the International H2O Project. Part II: Case Studies

D. N. Whiteman NASA GSFC, Greenbelt, Maryland

Search for other papers by D. N. Whiteman in
Current site
Google Scholar
PubMed
Close
,
B. Demoz NASA GSFC, Greenbelt, Maryland

Search for other papers by B. Demoz in
Current site
Google Scholar
PubMed
Close
,
G. Schwemmer NASA GSFC, Greenbelt, Maryland

Search for other papers by G. Schwemmer in
Current site
Google Scholar
PubMed
Close
,
B. Gentry NASA GSFC, Greenbelt, Maryland

Search for other papers by B. Gentry in
Current site
Google Scholar
PubMed
Close
,
P. Di Girolamo DIFA, University of Basilicata, Potenza, Italy

Search for other papers by P. Di Girolamo in
Current site
Google Scholar
PubMed
Close
,
D. Sabatino DIFA, University of Basilicata, Potenza, Italy

Search for other papers by D. Sabatino in
Current site
Google Scholar
PubMed
Close
,
J. Comer Science Systems Applications, Inc., Lanham, Maryland

Search for other papers by J. Comer in
Current site
Google Scholar
PubMed
Close
,
I. Veselovskii University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by I. Veselovskii in
Current site
Google Scholar
PubMed
Close
,
K. Evans University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by K. Evans in
Current site
Google Scholar
PubMed
Close
,
R-F. Lin University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by R-F. Lin in
Current site
Google Scholar
PubMed
Close
,
Z. Wang University of Wyoming, Laramie, Wyoming

Search for other papers by Z. Wang in
Current site
Google Scholar
PubMed
Close
,
A. Behrendt University of Hohenheim, Hohenheim, Germany

Search for other papers by A. Behrendt in
Current site
Google Scholar
PubMed
Close
,
V. Wulfmeyer University of Hohenheim, Hohenheim, Germany

Search for other papers by V. Wulfmeyer in
Current site
Google Scholar
PubMed
Close
,
E. Browell NASA Langley Research Center, Langley, Virginia

Search for other papers by E. Browell in
Current site
Google Scholar
PubMed
Close
,
R. Ferrare NASA Langley Research Center, Langley, Virginia

Search for other papers by R. Ferrare in
Current site
Google Scholar
PubMed
Close
,
S. Ismail NASA Langley Research Center, Langley, Virginia

Search for other papers by S. Ismail in
Current site
Google Scholar
PubMed
Close
, and
J. Wang National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The NASA GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June 2002 in the midwestern part of the United States. The SRL system configuration and methods of data analysis were described in Part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of Lidar Atmospheric Sensing Experiment (LASE) airborne water vapor lidar and chilled-mirror radiosonde are performed. Two case studies are then presented: one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the daytime SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in its meteorological context. Upper-tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud optical depth, extinction-to-backscatter ratio, ice water content, cirrus particle size, and both particle and volume depolarization ratios. A stability and back-trajectory analysis is performed to study the origin of wave activity in one of the cloud layers. These unprecedented cirrus cloud measurements are being used in a cirrus cloud modeling study.

Corresponding author address: D. N. Whiteman, NASA GSFC, Code 613.1, Building 33, Room D404, Greenbelt, MD 20771. Email: david.n.whiteman@nasa.gov

Abstract

The NASA GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June 2002 in the midwestern part of the United States. The SRL system configuration and methods of data analysis were described in Part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of Lidar Atmospheric Sensing Experiment (LASE) airborne water vapor lidar and chilled-mirror radiosonde are performed. Two case studies are then presented: one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the daytime SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in its meteorological context. Upper-tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud optical depth, extinction-to-backscatter ratio, ice water content, cirrus particle size, and both particle and volume depolarization ratios. A stability and back-trajectory analysis is performed to study the origin of wave activity in one of the cloud layers. These unprecedented cirrus cloud measurements are being used in a cirrus cloud modeling study.

Corresponding author address: D. N. Whiteman, NASA GSFC, Code 613.1, Building 33, Room D404, Greenbelt, MD 20771. Email: david.n.whiteman@nasa.gov

Save
  • Browell, E. V., and Ismail S. , 1995: First lidar measurements of water vapor and aerosols from a high-altitude aircraft. OSA Opt. Remote Sens. Atmos. Tech. Dig, 2 , 212214.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Coauthors, 1997: LASE validation experiment. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Springer-Verlag, 289–295.

    • Search Google Scholar
    • Export Citation
  • Demoz, B., and Coauthors, 2006: The dryline on 22 May 2002 during IHOP_2002: Convective-scale measurements at the profiling site. Mon. Wea. Rev, 134 , 293309.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., and Coauthors, 2003: The life cycle of a bore event over the Southern Great Plains during IHOP_2002. Preprints, 10th Conf. on Mesoscale Processes, Portland, OR, Amer. Meteor. Soc., CD-ROM, P2.14.

  • Gambacorta, A., Whiteman D. N. , Wang Z. , DeSlover D. H. , and Hoff R. M. , 2004: Particle size retrieval in cirrus clouds by use of a multiple scattering raman lidar technique. Proc. 22d Int. Laser Radar Conf., Matera, Italy, European Space Agency, ESA SP-561, Vol. I, 275–278.

  • Khvorostyanov, V. I., Curry J. A. , Pinto J. O. , Shupe M. , Baker B. A. , and Sassen K. , 2001: Modeling with explicit spectral water and ice microphysics of a two-layer cloud system of altostratus and cirrus observed during the FIRE Arctic Clouds Experiments. J. Geophys. Res, 106 , 1509915112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, R-F., Starr D. O. , Reichardt J. , and DeMott P. J. , 2005a: On the evolution of a cirrus anvil observed by NASA Scanning Raman Lidar on 19–20 June 2002 during IHOP. Preprints, Second Symp. on Lidar Atmospheric Applications, San Diego, CA, Amer. Meteor. Soc., CD-ROM, P2.6.

  • Lin, R-F., Starr D. O. , Reichardt J. , and DeMott P. J. , 2005b: Nucleation in synoptically forced cirrostratus. J. Geophys. Res, 110 .D08208, doi:10.1029/2004JD005362.

    • Search Google Scholar
    • Export Citation
  • Linné, H., Turner D. D. , Goldsmith J. E. M. , Tooman T. P. , Bösenberg J. , Ertel K. , and Lehmann S. , 2000: Intercomparison of DIAL and Raman lidar measurements of humidity profiles. Advances in Laser Remote Sensing: Selected Papers from the 20th International Laser Radar Conference, A. Dabas, C. Loth, and J. Pelon, Eds., Ecole Polytechnique, 293–298.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., Krueger S. K. , Mace G. G. , and Xu K-M. , 2003: Cirrus cloud properties from a cloud-resolving model simulation compared to cloud radar observations. J. Atmos. Sci, 60 , 510525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Newman P. , Keller T. , Levinson D. , and Fedor L. , 1997: Observations, simulations, and analysis of nonstationary trapped lee waves. J. Atmos. Sci, 54 , 13081333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichardt, J., Reichardt S. , Behrendt A. , and McGee T. J. , 2002: Correlations among the optical properties of cirrus-cloud particles: Implications for spaceborne remote sensing. Geophys. Res. Lett, 29 , 1668. doi:10.1029/2002GL014836.

    • Search Google Scholar
    • Export Citation
  • Sabatino, D., and Coauthors, 2004: Water vapour measurements during the International H2O Project: Intercomparisons between Scanning Raman Lidar and LASE. Proc. 22d Int. Laser Radar Conf., Matera, Italy, European Space Agency, ESA SP-561, Vol. I, 435–438.

  • Sassen, K., Wang Z. , Khvorostyanov V. I. , Stephens G. L. , and Bennedetti A. , 2002: Cirrus cloud ice water content radar algorithm evaluation using an explicit cloud microphyhsical model. J. Appl. Meteor, 41 , 620628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc, 75 , 4156.

  • Senff, C., Bösenberg J. , and Peters G. , 1994: Mesurement of water vapor flux profiles in the convective boundary layer with lidar and RADAR–RASS. J. Atmos. Oceanic Technol, 11 , 8593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G., 1997: Operational lee wave forecasting. Meteor. Appl, 4 , 2335.

  • Wang, J., Carlson D. J. , Parsons D. B. , Hock T. F. , Lauritsen D. , Cole H. L. , Beierle K. , and Chamberlain E. , 2003: Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication. Geophys. Res. Lett, 30 .1860, doi:10.1029/2003GL016985.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., Whiteman D. N. , Demoz B. B. , and Veselovskii I. , 2004: A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar. Geophys. Res. Lett, 31 .L15101, doi:10.1029/2004GL020004.

    • Search Google Scholar
    • Export Citation
  • Weckworth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Melfi S. H. , and Ferrare R. A. , 1992: Raman lidar system for the measurement of water vapor and aerosols in the earth's atmosphere. Appl. Opt, 31 , 30683082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2001a: Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie. J. Geophys. Res, 106 , D6. 52115225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Schwemmer G. , Berkoff T. , Plotkin H. , Ramos-Izquierdo L. , and Pappalardo G. , 2001b: Performance modeling of an airborne Raman water vapor lidar. Appl. Opt, 40 , 375390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Wang Z. , and Demoz B. , 2004: Subtropical cirrus cloud extinction to backscatter ratios measured by Raman lidar during CAMEX-3. Geophys. Res. Lett, 31 .L12105, doi:10.1029/2004GL020003.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2006: Raman water vapor lidar measurements during the International H2O Project. Part I: Instrumentation and analysis techniques. J. Atmos. Oceanic Technol, 23 , 157169.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 335 74 3
PDF Downloads 141 46 4