Abstract
The attenuation of a radar signal is a serious problem facing meteorologists and hydrologists. In heavy rain, reflectivity information can be completely lost from large portions of a radar scan. The problem is particularly acute for X-band radars.
Current methods of correcting for attenuation face many difficulties, mainly because the actual amount of attenuation at any given time is unknown. In this paper a backward-iterative attenuation-correction algorithm is presented that uses the attenuation measured by a microwave link with its receiver collocated with an X-band weather radar in Essen, Germany. Data are also available from a network of rain gauges located in the vicinity of the link path. This network provides a measure of “ground truth” rainfall against which radar estimates can be compared.
The results show that the algorithm can recover much of the reflectivity information that is lost due to attenuation of the radar beam. The method is seen to be particularly effective in convective conditions where heavy rainfall can cause severe attenuation.
Corresponding author address: Anthony Holt, Dept. of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom. Email: anthony@essex.ac.uk