• Ao, C. O., , Hajj G. A. , , Leroy S. S. , , Meehan T. K. , , Kursinski E. R. , , de la Torre Juàrez M. , , Iijima B. A. , , and Mannucci A. J. , 2003: Backpropagation processing of GPS radio occultation data. First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, C. Reigber, H. Lühr, and P. Schwintzer, Eds., Springer-Verlag, 415–422.

    • Search Google Scholar
    • Export Citation
  • Beyerle, G., , Wickert J. , , Schmidt T. , , and Reigber C. , 2004: Atmospheric sounding by global navigation satellite system radio occultation: An analysis of the negative refractive bias using CHAMP observations. J. Geophys. Res, 109 .D01106, doi:10.1029/2003JD003922.

    • Search Google Scholar
    • Export Citation
  • de la Torre Juàrez, M., , and Nilsson M. , 2003: On the detection of water vapor profiles and thin moisture layers from atmospheric radio occultations. J. Geophys. Res, 108 .4276, doi:10.1029/2002JD002880.

    • Search Google Scholar
    • Export Citation
  • Goody, R., , Anderson J. , , and North G. , 1998: Testing climate models: An approach. Bull. Amer. Meteor. Soc, 79 , 127.

  • Gorbunov, M. E., , and Sokolovskiy S. V. , 1993: Remote sensing of refractivity from space for global observations of atmospheric parameters. Max Planck Institute for Meteorology Rep. 119, 58 pp.

  • Healy, G. A., , and Eyre J. , 2000: Retrieving temperature, water vapor and surface pressure information from refractive index profiles derived by radio occultations: A simulation study. Quart. J. Roy. Meteor. Soc, 126 , 16611683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopfield, H. S., 1969: Two-quartic tropospheric refractivity profile for correcting satellite data. J. Geophys. Res, 74 , 44874499.

  • Kursinski, E. R., , and Hajj G. A. , 2001: A comparison of water vapor derived from GPS occultations and global weather analyses. J. Geophys. Res, 106 , 11131138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , Hajj G. A. , , Schofield J. T. , , Linfield K. , , and Hardy R. , 1997: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res, 102 , 2342923465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O'Sullivan, D. B., , Herman B. M. , , Feng D. E. , , Flittner D. E. , , and Ward D. M. , 2000: Retrieval of water vapor profiles from GPS/MET radio occultations. Bull. Amer. Meteor. Soc, 81 , 10311040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., , Wigley T. M. L. , , Barnett T. P. , , and Anyamba E. , 1996: Detection of climate change and attribution of causes. Climate Change 1995: The Science of Climate Change, J. T. Houghton et al., Eds., Cambridge University Press, 407–444.

    • Search Google Scholar
    • Export Citation
  • Smith, E. K., , and Weintraub S. , 1953: The constants in the equation for atmospheric refractive index at radio frequencies. Proc. IRE, 41 , 10351037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S. V., 2001: Tracking tropospheric radio occultation signals from low Earth orbit. Radio Sci, 36 , 483498.

  • Steiner, A. K., , Kirchengast G. , , and Ladreiter H. P. , 1999: Inversion error analysis and validation of GPS/MET occultation data. Ann. Geophys, 17 , 122138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vespe, F., 2002: Water vapor retrieval by GNSS radio occultation technique with no external information. Proc. COSMIC Science Workshop, Boulder, CO, NSF, Session 3.4.

  • Vespe, F., , Banfi E. , , Benedetto C. , , Pacione R. , , Nardi A. , , and Sciarretta C. , 2002: GNSS radio occultations for climate applications: A benchmark with spaceborne nadir sounders. Vistas for Geodesy in New Millennium, J. Adams and K. P. Schwarz, Eds., IAG Symposia Springer Series, Vol. 125, Springer, 284–289.

    • Crossref
    • Export Citation
  • Vespe, F., , Benedetto C. , , and Pacione R. , 2003: GNSS radio occultation: From the bending angles to the atmospheric profiles. Proc. URSI Workshop on Atmospheric Remote Sensing Using Satellite Navigation System, Matera, Italy, Agenzia Spaziale Italiana, 247–255.

  • Vespe, F., , Benedetto C. , , and Pacione R. , 2004: The use of refractivity retrieved by radio occultation technique for the derivation of atmospheric water vapor content. Phys. Chem. Earth, 29 , 257266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wickert, J., and Coauthors, 2001: Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett, 28 , 32633266.

  • Wickert, J., , Schmidt T. , , Marquardt C. , , Reigber Ch , , Neumayer K. H. , , Beyerle G. , , and Galas R. , 2002: GPS radio occultation with CHAMP: First results and status of the experiment. Vistas for Geodesy in New Millennium, J. Adams and K. P. Schwarz, Eds., IAG Symposia Springer Series, Vol. 125, Springer, 273–278.

    • Crossref
    • Export Citation
  • Wickert, J., , Schmidt T. , , Beyerle G. , , König R. , , Reigber Ch , , and Jakowski N. , 2004: The radio occultation experiment aboard CHAMP: Operational data analysis and validation of vertical atmospheric profiles. J. Meteor. Soc. Japan, 82 , 381395.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 12
PDF Downloads 54 54 5

Derivation of the Water Vapor Content from the GNSS Radio Occultations Observations

View More View Less
  • 1 Agenzia Spaziale Italiana, Matera, Italy
© Get Permissions
Restricted access

Abstract

The present work investigates the possibility of retrieving humidity using the bending angle data obtained from radio occultation of GPS signals without additional external information. In particular, with the proposed approach, the dry pressure profiles are obtained by fitting the bending angles of the outer-troposphere layers (from h = h250K up to the stratopause) using the Hopfield dry atmosphere model. The ground pressure and temperature are the parameters of the model to be estimated. In the second step the humidity profiles are extracted by subtracting the contribution resulting from the dry atmosphere from the measured bending angles. Such derivation implies a complex mathematical treatment of the relationship between the bending angle and the refractivity, which is fully explained herein. Furthermore, the method was applied on Challenging Minisatellite Payload (CHAMP) profiles. The CHAMP profiles are achieved by applying heuristic retrieval algorithms based on the canonical transform. The algorithms are applied to minimize the negative refractivity bias that is observed for low-latitude GNSS RO. Thus, the results are shown and discussed in the second part of the paper. Finally, it is widely discussed how the proposed method is able to retrieve refractivity profiles without using the Abel inversion.

Corresponding author address: Dr. Francesco Vespe, Centro Geodesia Spaziale “G. Colombo,” Loc. Terlecchia, P.O. Box A.D.P., 75100 Matera, Italy. Email: francesco.vespe@asi.it

Abstract

The present work investigates the possibility of retrieving humidity using the bending angle data obtained from radio occultation of GPS signals without additional external information. In particular, with the proposed approach, the dry pressure profiles are obtained by fitting the bending angles of the outer-troposphere layers (from h = h250K up to the stratopause) using the Hopfield dry atmosphere model. The ground pressure and temperature are the parameters of the model to be estimated. In the second step the humidity profiles are extracted by subtracting the contribution resulting from the dry atmosphere from the measured bending angles. Such derivation implies a complex mathematical treatment of the relationship between the bending angle and the refractivity, which is fully explained herein. Furthermore, the method was applied on Challenging Minisatellite Payload (CHAMP) profiles. The CHAMP profiles are achieved by applying heuristic retrieval algorithms based on the canonical transform. The algorithms are applied to minimize the negative refractivity bias that is observed for low-latitude GNSS RO. Thus, the results are shown and discussed in the second part of the paper. Finally, it is widely discussed how the proposed method is able to retrieve refractivity profiles without using the Abel inversion.

Corresponding author address: Dr. Francesco Vespe, Centro Geodesia Spaziale “G. Colombo,” Loc. Terlecchia, P.O. Box A.D.P., 75100 Matera, Italy. Email: francesco.vespe@asi.it

Save