• Ackerman, T. P., , and Toon O. B. , 1981: Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Appl. Opt, 20 , 36613668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., , and Ogren J. A. , 1998: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Sci. Technol, 29 , 5769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., and Coauthors, 1996: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer. J. Atmos. Oceanic Technol, 13 , 967986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., , Covert D. S. , , Wheeler J. D. , , Harris J. M. , , Perry K. D. , , Trost B. E. , , Jaffe D. J. , , and Ogren J. A. , 1999: Aerosol backscatter fraction and single scattering albedo: Measured values and uncertainties at a coastal station in the Pacific Northwest. J. Geophys. Res, 104 , D21. 2679326807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., , Masonis S. J. , , Covert D. S. , , Ahlquist N. C. , , Howell S. G. , , Clarke A. D. , , and McNaughton C. S. , 2003: Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia. J. Geophys. Res, 108 .8647, doi:10.1029/2002JD003247.

    • Search Google Scholar
    • Export Citation
  • Baron, P. A., 1986: Calibration and use of the Aerodynamic Particle Sizer (APS 3300). Aerosol Sci. Technol, 5 , 5567.

  • Beuttell, R. G., , and Brewer A. W. , 1949: Instruments for the measurement of the visual range. J. Sci. Instrum, 26 , 357359.

  • Charlson, R. J., , Langner J. , , Rodhe H. , , Leovy C. B. , , and Warren S. G. , 1991: Perturbation of the Northern Hemisphere radiative balance by backscattering of anthropogenic sulfate aerosols. Tellus, 43AB , 152163.

    • Search Google Scholar
    • Export Citation
  • Collins, D. R., , Cocker D. R. , , Flagan R. C. , , and Seinfeld J. H. , 2004: The scanning DMA transfer function. Aerosol Sci. Technol, 38 , 833850.

  • Dave, J. V., 1968: Subroutines for computing the parameters of the electromagnetic radiation scattered by a sphere. IBM Scientific Center, Palo Alto, CA, 65 pp.

  • Dave, J. V., 1969: Scattering of electromagnetic radiation by a large, absorbing sphere. IBM J. Res. Develop, 13 , 3. 302314.

  • Ensor, D. S., , and Waggoner A. P. , 1970: Angular truncation error in the in the integrating nephelometer. Atmos. Environ, 4 , 481487.

  • Hasan, H., , and Lewis C. W. , 1983: Integrating nephelometer response corrections for bimodal size distributions. Aerosol Sci. Technol, 2 , 443453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinicke, J., 1967: Measurement of light scattering in the near infrared and visible spectral region with two scattered light recorders (in German). M.S. thesis, Department of Meteorology, University of Munich, 65 pp.

  • Heintzenberg, J., 1975: Determination in situ of the size distribution of the atmospheric aerosol. J. Aerosol Sci, 6 , 291303.

  • Heintzenberg, J., , and Quenzel H. , 1973a: Calculations on the determination of the scattering coefficient of turbid air with integrating nephelometers. Atmos. Environ, 7 , 509519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J., , and Quenzel H. , 1973b: On the effect of the loss of large particles on the determination of scattering coefficients with integrating nephelometers. Atmos. Environ, 7 , 503507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J., , and Charlson R. J. , 1996: Design and applications of the integrating nephelometer: A review. J. Atmos. Oceanic Technol, 13 , 9871000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasten, F., 1968: Rayleigh-Cabannes-Streuung in trockener Luft unter Berücksichtigung neuerer Depolarisations-Messungen. Optik, 27 , 155166.

    • Search Google Scholar
    • Export Citation
  • Marshall, I. A., , Mitchell J. P. , , and Griffiths W. D. , 1991: The behaviour of regular-shaped non-spherical particles in a TSI aerodynamic particle sizer. J. Aerosol Sci, 22 , 7389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masonis, S. J., , Franke K. , , Ansmann A. , , Müller D. , , Althausen D. , , Ogren J. A. , , Jefferson A. , , and Sheridan P. J. , 2002: An intercomparison of aerosol light extinction and 180 ° backscatter as derived using in situ instruments and Raman lidar during the Indoex field campaign. J. Geophys. Res, 107 .8014, doi:10.1029/2000JD000035.

    • Search Google Scholar
    • Export Citation
  • Ogren, J., 1995: In situ. observations of aerosol properties. Aerosol Forcing of Climate, R. J. Charlson and J. Heintzenberg, Eds., John Wiley and Sons, 215–226.

    • Search Google Scholar
    • Export Citation
  • Quenzel, H., 1969: Der Einfluss der Aerosolgrößenverteilung auf die Messgenauigkeit von Streulichtmessern. Gerlands Beitr. Geophys, 78 , 251263.

    • Search Google Scholar
    • Export Citation
  • Quinn, P. K., and Coauthors, 1996: Closure in tropospheric aerosol–climate research: A review and future needs for addressing aerosol direct shortwave radiative forcing. Contrib. Atmos. Phys, 69 , 547577.

    • Search Google Scholar
    • Export Citation
  • Rabinoff, R. A., , and Herman B. M. , 1973: Effect of aerosol size distribution on the accuracy of the integrating nephelometer. J. Appl. Meteor, 12 , 184186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppersberg, G. H., 1959: Recent approaches to recording the visibility on airports. Annual Report of the Scientific Society for Air Traffic, 230–236.

  • Ruppersberg, G. H., 1964: Registrierung der Sichtweite mit dem Streulichtschreiber. Contrib. Atmos. Phys, 37 , 252263.

  • Sheridan, P. J., , Jefferson A. , , and Ogren J. A. , 2002: Spatial variability of submicrometer aerosol radiative properties over the Indian Ocean during INDOEX. J. Geophys. Res, 107 .8011, doi:10.1029/2000JD000166.

    • Search Google Scholar
    • Export Citation
  • Waggoner, A. P., , Ahlquist N. C. , , and Charlson R. J. , 1972: Measurement of the aerosol total scatter-backscatter ratio. Appl. Opt, 11 , 28862889.

  • Wang, S. C., , and Flagan R. C. , 1990: Scanning electrical mobility spectrometer. Aerosol Sci. Technol, 13 , 230240.

  • Wex, H., , Neusüß C. , , Wendisch M. , , Stratmann F. , , Koziar C. , , Keil A. , , Wiedensohler A. , , and Ebert M. , 2002: Particle scattering, backscattering, and absorption coefficients: An in-situ closure and sensitivity study. J. Geophys. Res, 107 .8122, doi:10.1029/2000JD000234.

    • Search Google Scholar
    • Export Citation
  • White, W. H., , Macias E. S. , , Nininger R. C. , , and Schorran D. , 1994: Size-resolved measurements of light scattering by ambient particles in the southwestern U.S.A. Atmos. Environ, 28 , 909921.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 11
PDF Downloads 83 83 6

Intercomparisons and Aerosol Calibrations of 12 Commercial Integrating Nephelometers of Three Manufacturers

View More View Less
  • 1 Leibniz Institute for Tropospheric Research, Leipzig, Germany
  • | 2 Leibniz Institute for Tropospheric Research, Leipzig, Germany
  • | 3 Centre for Environmental Research, Department for Human Exposure Research and Epidemiology, Leipzig, Germany
  • | 4 Department of Atmospheric Science, University of Washington, Seattle, Washington
  • | 5 NOAA/Climate Monitoring and Diagnostics Laboratory, Boulder, Colorado
  • | 6 CSIRO Atmospheric Research, Aspendale, Victoria, Australia
  • | 7 Laboratory for Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
  • | 8 Department of Experimental Physics, National University of Ireland, Galway, Galway, Ireland
  • | 9 Department of Chemistry, University of Crete, Heraklion, Greece
  • | 10 Meteorological Observatory Hohenpeissenberg, Deutscher Wetterdienst, Hohenpeissenberg, Germany
  • | 11 Finnish Meteorological Institute, Helsinki, Finland
  • | 12 TSI, Incorporated, St. Paul, Minnesota
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study determined measured and Mie-calculated angular signal truncations for total and backscatter TSI, Inc., nephelometers, as a function of wavelength and for particles of known size and composition. Except for the total scattering channels, similar agreements as in a previous study of measured and calculated truncations were derived for submicrometer test aerosols. For the first time, instrument responses were also determined for supermicrometer test aerosols up to 1.9 μm in geometric mean diameter. These supermicrometer data confirm the theoretical predictions of strong angular truncations of the total scatter signals in integrating nephelometers due to the limited range of measured forward scattering angles. Truncations up to 60% were determined for the largest measured particles. Rough empirical truncation corrections have been derived from the calibration data for Radiance Research and Ecotech nephelometers for which no detailed response characteristics exist. Intercomparisons of the nephelometers measuring urban atmospheric aerosols yield average deviations of the slope from a 1:1 relation with a TSI reference nephelometer of less than 7%. Average intercepts range between +0.53 and −0.19 Mm−1. For the Radiance Research and Ecotech nephelometers ambient regressions of the Radiance Research and Ecotech instruments with the TSI nephelometer show larger negative intercepts, which are attributed to their less well characterized optics.

Corresponding author address: J. Heintzenberg, Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: jost@tropos.de

Abstract

This study determined measured and Mie-calculated angular signal truncations for total and backscatter TSI, Inc., nephelometers, as a function of wavelength and for particles of known size and composition. Except for the total scattering channels, similar agreements as in a previous study of measured and calculated truncations were derived for submicrometer test aerosols. For the first time, instrument responses were also determined for supermicrometer test aerosols up to 1.9 μm in geometric mean diameter. These supermicrometer data confirm the theoretical predictions of strong angular truncations of the total scatter signals in integrating nephelometers due to the limited range of measured forward scattering angles. Truncations up to 60% were determined for the largest measured particles. Rough empirical truncation corrections have been derived from the calibration data for Radiance Research and Ecotech nephelometers for which no detailed response characteristics exist. Intercomparisons of the nephelometers measuring urban atmospheric aerosols yield average deviations of the slope from a 1:1 relation with a TSI reference nephelometer of less than 7%. Average intercepts range between +0.53 and −0.19 Mm−1. For the Radiance Research and Ecotech nephelometers ambient regressions of the Radiance Research and Ecotech instruments with the TSI nephelometer show larger negative intercepts, which are attributed to their less well characterized optics.

Corresponding author address: J. Heintzenberg, Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: jost@tropos.de

Save