• Basist, A., , Williams C. Jr., , Grody N. , , Ross T. F. , , Shen S. , , Chang A. T. C. , , Ferraro R. , , and Menne M. J. , 2001: Using the Special Sensor Microwave Imager to monitor surface wetness. J. Hydrometeor, 2 , 297308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brock, F. V., , Crawford K. C. , , Elliott R. L. , , Cuperus G. W. , , Stadler S. J. , , Johnson H. L. , , and Eilts M. D. , 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol, 12 , 519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., , Hsu A. Y. , , and Schmugge T. , 1993: Parameterization of surface heat fluxes above forest with satellite thermal sensing and boundary layer soundings. J. Appl. Meteor, 32 , 909917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., , Gillies R. R. , , and Perry E. , 1994: A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev, 9 , 161173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., , Owe M. , , Goward S. N. , , Golus R. E. , , Ormsby J. P. , , Chang A. T. C. , , and Wang J. R. , 1987: Quantifying spatial and temporal variabilities of microwave brightness temperature over the U.S. Southern Great Plains. Int. J. Remote Sens, 8 , 177191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diak, G. R., , Rabin R. M. , , Gallo K. P. , , and Neale C. M. , 1995: Regional-scale comparisons of vegetation and soil wetness with surface energy budget properties from satellite and in-situ observations. Remote Sens. Rev, 12 , 355382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., , and van den Dool H. , 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res, 109 .D10102, doi:10.1029/2003JD004345.

    • Search Google Scholar
    • Export Citation
  • Hall, F. G., , Huemmrich K. F. , , Goetz S. J. , , Sellers P. J. , , and Nickerson J. E. , 1992: Satellite remote sensing of surface energy balance: Success, failures and unresolved issues in FIFE. J. Geophys. Res, 97 , 1906119089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, C. M., , Wade G. S. , , and Schmit T. J. , 1996: Derived product imagery from GOES-8. J. Appl. Meteor, 35 , 153162.

  • Hillger, D. W., , and Kidder S. Q. , 2005: A simple GOES skin temperature product. Natl. Wea. Dig, 29 .(4).

  • Kogan, F. N., 1997: Global drought watch from space. Bull. Amer. Meteor. Soc, 78 , 621636.

  • Knuteson, R. O., , Deslover D. H. , , Larar A. M. , , Osborne B. , , Revercomb H. E. , , Short J. F. , , Smith W. L. , , and Tanamachi R. , 2003: Infrared land surface remote sensing using high spectral resolution observations. Multispectral and Hyperspectral Remote Sensing Instruments and Applications, A. M. Larar, Q. Tong, nad M. Suzuki, Eds., International Society for Optical Engineering (SPIE), 24–35.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., , Schmugge T. J. , , Humes K. S. , , Jackson T. J. , , and Parry R. , 1993: Relationships between evaporative fraction and remotely sensed vegetation index and microwave brightness temperature for semiarid rangelands. J. Appl. Meteor, 32 , 17811790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., and Coauthors, 1999: The Man Computer Interactive Data Access System: 25 years of interactive processing. Bull. Amer. Meteor. Soc, 80 , 271284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X. L., , Schmit T. J. , , and Smith W. L. , 1999: A nonlinear physical retrieval algorithm—Its application to the GOES-8/9 sounder. J. Appl. Meteor, 38 , 501513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , Holt F. C. , , Schmit T. J. , , Aune R. M. , , Schreiner A. J. , , Wade G. S. , , and Gray D. G. , 1998: Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc, 79 , 20592077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, C. M. U., , McFarland M. J. , , and Chang K. , 1990: Land surface type classification using microwave brightness temperatures from the Special Sensor Microwave/Imager. IEEE Trans. Geosci. Remote Sens, 28 , 829838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., , Burns B. , , Collimore C. , , Diak G. R. , , and Raymond W. , 2000: Relating remotely-sensed vegetation and soil moisture indices to surface energy fluxes in vicinity of an atmospheric dryline. Remote Sens. Rev, 18 , 5383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., , Gunshor M. M. , , Menzel W. P. , , Gurka J. , , Li J. , , and Bachmeier S. , 2005: Introducing the next-generation advanced baseline imager (ABI) on Geostationary Operational Environmental Satellites (GOES)-R. Bull. Amer. Meteor. Soc, 86 , 10791096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, J. M., , Fisher D. K. , , Elliott R. L. , , Brown G. O. , , and Bahrmann C. P. , 2003: Spatiotemporal variations in soil water: First results from the ARM SGP CART network. J. Hydrometeor, 4 , 106120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swets, D. L., , Reed B. C. , , Rowland J. D. , , and Marko S. E. , 1999: A weighted least-squares approach to temporal NDVI smoothing. Proc. American Society of Photogrammetry and Remote Sensing, Portland, OR, American Society of Photogrammetry and Remote Sensing, 526–536.

  • Wang, J. R., , Shiue J. C. , , and McMurtrey J. E. , 1980: Microwave remote sensing of soil moisture content over bare and vegetated fields. Geophys. Res. Lett, 7 , 801804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilke, G. D., , and McFarland M. J. , 1986: Correlations between Nimbus 7 scanning multichannel microwave radiometer (SMMR) data and an antecedent precipitation index. J. Climate Appl. Meteor, 25 , 227238.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 9
PDF Downloads 8 8 0

Estimating Soil Wetness from the GOES Sounder

View More View Less
  • 1 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NOAA/NESDIS, Office of Research and Applications, Advanced Satellite Products Branch, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

In this note, the relationship between the observed daytime rise in surface radiative temperature, derived from the Geostationary Operational Environmental Satellites (GOES) sounder clear-sky data, and modeled soil moisture is explored over the continental United States. The motivation is to provide an infrared (IR) satellite–based index for soil moisture, which has a higher resolution than possible with the microwave satellite data. The daytime temperature rise is negatively correlated with soil moisture in most areas. Anomalies in soil moisture and daytime temperature rise are also negatively correlated on monthly time scales. However, a number of exceptions to this correlation exist, particularly in the western states. In addition to soil moisture, the capacity of vegetation to generate evapotranspiration influences the amount of daytime temperature rise as sensed by the satellite. In general, regions of fair to poor vegetation health correspond to the relatively high temperature rise from the satellite. Regions of favorable vegetation match locations of lower-than-average temperature rise.

Corresponding author address: Dr. Robert Rabin, NOAA/National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. Email: rabin@ssec.wisc.edu

Abstract

In this note, the relationship between the observed daytime rise in surface radiative temperature, derived from the Geostationary Operational Environmental Satellites (GOES) sounder clear-sky data, and modeled soil moisture is explored over the continental United States. The motivation is to provide an infrared (IR) satellite–based index for soil moisture, which has a higher resolution than possible with the microwave satellite data. The daytime temperature rise is negatively correlated with soil moisture in most areas. Anomalies in soil moisture and daytime temperature rise are also negatively correlated on monthly time scales. However, a number of exceptions to this correlation exist, particularly in the western states. In addition to soil moisture, the capacity of vegetation to generate evapotranspiration influences the amount of daytime temperature rise as sensed by the satellite. In general, regions of fair to poor vegetation health correspond to the relatively high temperature rise from the satellite. Regions of favorable vegetation match locations of lower-than-average temperature rise.

Corresponding author address: Dr. Robert Rabin, NOAA/National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. Email: rabin@ssec.wisc.edu

Save