• Ackerman, T. P., and Stokes G. M. , 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3844.

  • Aires, F., Rossow W. B. , Scott N. A. , and Chedin A. , 2002: Remote sensing from the infrared atmospheric sounding interfereometer instrument 1. Compression, denoising, and first-guess retrieval algorithms. J. Geophys. Res., 107 .4619, doi:10.1029/2001JD000955.

    • Search Google Scholar
    • Export Citation
  • Antonelli, P., and Coauthors, 2004: A principal component noise filter for high spectral resolution infrared measurements. J. Geophys. Res., 109 .D23102, doi:10.1029/2004JD004862.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., Ackerman T. P. , Mace G. G. , Moran K. P. , Marchand R. T. , Miller M. A. , and Martner B. E. , 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39 , 645665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., Ackerman T. P. , and Mace G. G. , 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107 .4714, doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., Smith W. L. , Howell H. B. , Knuteson R. O. , Woolf H. , and Revercomb H. E. , 2003: Near-continuous profiling of temperature, moisture, and atmospheric stability using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42 , 584597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., Qu Y. , McMillin L. M. , Wolf W. , Zhou L. , and Divakarla M. , 2003: AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Trans. Geosci. Remote Sens., 41 , 379389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goody, R. M., Anderson J. , and North G. , 1998: Testing climate models: An approach. Bull. Amer. Meteor. Soc., 79 , 25412549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, H., McMillan W. W. , Knuteson R. O. , and Feltz W. F. , 2001: Tropospheric carbon monoxide column density retrieval during the Pre-launch MOPITT Validation Exercise. Atmos. Environ., 35 , 509514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H-L., and Antonelli P. , 2001: Application of principal component analysis to high-resolution infrared measurement compression and retrieval. J. Appl. Meteor., 40 , 365388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., Farrara J. , Leroy S. S. , Yung Y. L. , and Goody R. M. , 2002: Cloud variability as revealed in outgoing infrared spectra: Comparing model to observation with spectral EOF analysis. Geophys. Res. Lett., 29 .1270, doi:10.1029/2001GL014176.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., Shupe M. D. , Uttal T. , and McCarty B. J. , 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107 .8029, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., Best F. A. , DeSlover D. H. , Osborne B. J. , Revercomb H. E. , and Smith W. L. Sr., 2004a: Infrared land surface remote sensing using high spectral resolution aircraft observations. Adv. Space Res., 22 , 11141119.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21 , 17631776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004c: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21 , 17771789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Ackerman T. P. , Minnis P. , and Young D. F. , 1998: Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data. J. Geophys. Res., 103 , 2320723216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malinowski, E. R., 1977a: Theory of error in factor analysis. Anal. Chem., 49 , 606612.

  • Malinowski, E. R., 1977b: Determination of the number of factors and the experimental error in a data matrix. Anal. Chem., 49 , 612617.

  • Malinowski, E. R., 2002: Factor Analysis in Chemistry. 3d ed. Wiley and Sons, 414 pp.

  • Nalli, N. R., Smith W. L. , and Huang B. , 2001: Quasi-specular model for calculating the reflection of atmospheric-emitted infrared radiation from a rough water surface. Appl. Opt., 40 , 13431353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., Teukolsky S. A. , Vetterling W. T. , and Flannery B. P. , 1992: Numerical Recipes in C: The Art of Scientific Computing. 2d ed. Cambridge University Press, 994 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., and Woolf H. M. , 1976: The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations. J. Atmos. Sci., 33 , 11271140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Ackerman S. A. , Revercomb H. E. , Huang H-L. , DeSlover D. H. , Feltz W. F. , Gumley L. , and Collard A. , 1998: Infrared spectral absorption of nearly invisible cirrus clouds. Geophys. Res. Lett., 25 , 11371140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolik, I. N., Toon O. B. , and Bergstrom R. W. , 1998: Modeling the radiative characteristics of mineral aerosols at infrared wavelengths. J. Geophys. Res., 103 , 88138826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sromovsky, L. A., 2003: Radiometric errors in complex Fourier transform spectroscopy. Appl. Opt., 42 , 17791787.

  • Susskind, J., Barnet C. D. , and Blaisdell J. M. , 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41 , 390409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., and Coauthors, 1999: Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26 μm. J. Geophys. Res., 104 , 20812092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI-lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44 , 427444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Holz R. E. , 2005: Retrieving cloud fraction in the field-of-view of a high-spectral resolution infrared radiometer. Geosci. Remote Sens. Lett., 3 , 287291.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Ferrare R. A. , Heilman Brasseur L. A. , Feltz W. F. , and Tooman T. P. , 2002: Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar. J. Atmos. Oceanic Technol., 19 , 3750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci., 61 , 26572675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and Coauthors, 2005: Overview of the Mixed-Phase Arctic Cloud Experiment (M-PACE). Preprints, Eighth Conf. on Polar Meteorology and Oceanography, San Diego, CA, Amer. Meteor. Soc., CD-ROM, P1.14.

  • Zhou, D. K., Smith W. L. , Liu X. , Larar A. M. , Huang H-L. , Li J. , McGill M. J. , and Mango S. A. , 2005: Thermodynamic and cloud parameter retrieval using infrared spectral data. Geophys. Res. Lett., 32 .L15805, doi:10.1029/2005GL023211.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 3 3 3

Noise Reduction of Atmospheric Emitted Radiance Interferometer (AERI) Observations Using Principal Component Analysis

View More View Less
  • 1 University of Wisconsin—Madison, Madison, Wisconsin
  • | 2 Pacific Northwest National Laboratory, Richland, Washington
  • | 3 University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

A principal component noise filter has been applied to ground-based high-spectral-resolution infrared radiance observations collected by the Atmospheric Emitted Radiance Interferometers (AERIs) deployed by the Atmospheric Radiation Measurement (ARM) program. The technique decomposes the radiance observations into their principal components, selects the ones that describe the most variance in the data, and reconstructs the data from these components. An empirical function developed for chemical analysis is utilized to determine the number of principal components to be used in the reconstruction of the data. Statistical analysis of the noise-filtered minus original radiance data, as well as side-by-side analysis of data from two AERI systems utilizing different temporal sampling, demonstrates the ability of the noise filter using this empirical function to retain most of the atmospheric signal above the AERI noise level in the filtered data. The noise filter is applied to data collected at ARM’s tropical, midlatitude, and Arctic sites, demonstrating that the random variability in the data is reduced by 5% to over 450%, depending on the spectral element and location of the instrument. A seasonal analysis of the number of principal components required by the noise filter for each site shows a strong seasonal dependence in the atmospheric variability at the Arctic and midlatitude sites but not at the tropical site.

Corresponding author address: Dr. David D. Turner, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706. Email: dturner@ssec.wisc.edu

Abstract

A principal component noise filter has been applied to ground-based high-spectral-resolution infrared radiance observations collected by the Atmospheric Emitted Radiance Interferometers (AERIs) deployed by the Atmospheric Radiation Measurement (ARM) program. The technique decomposes the radiance observations into their principal components, selects the ones that describe the most variance in the data, and reconstructs the data from these components. An empirical function developed for chemical analysis is utilized to determine the number of principal components to be used in the reconstruction of the data. Statistical analysis of the noise-filtered minus original radiance data, as well as side-by-side analysis of data from two AERI systems utilizing different temporal sampling, demonstrates the ability of the noise filter using this empirical function to retain most of the atmospheric signal above the AERI noise level in the filtered data. The noise filter is applied to data collected at ARM’s tropical, midlatitude, and Arctic sites, demonstrating that the random variability in the data is reduced by 5% to over 450%, depending on the spectral element and location of the instrument. A seasonal analysis of the number of principal components required by the noise filter for each site shows a strong seasonal dependence in the atmospheric variability at the Arctic and midlatitude sites but not at the tropical site.

Corresponding author address: Dr. David D. Turner, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706. Email: dturner@ssec.wisc.edu

Save