• Anagnostou, E. N., Anagnostou M. N. , Krajewski W. F. , Kruger A. , and Miriovsky B. J. , 2004: High-resolution rainfall estimation from X-band polarimetric radar measurements. J. Hydrometeor., 5 , 110128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andsager, K., Beard K. V. , and Laird N. F. , 1999: Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56 , 26732683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and Chuang C. , 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44 , 15091524.

  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Chandrasekar V. , Balakrishnan N. , and Zrnić D. S. , 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7 , 829840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Huang G. J. , Chandrasekar V. , and Gorgucci E. , 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19 , 633645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Chandrasekar V. , Hubbert J. , Gorgucci E. , Randeu W. L. , and Schoenhuber M. , 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60 , 354365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Gorgucci E. , and Baldini L. , 2002: Evaluation of polarimetric radar rainfall algorithms at X-band. Proc. ERAD 2002, Delft, Netherlands, ERAD, 277–281.

  • Chandrasekar, V., Fukatsu H. , and Mubarak K. , 2003: Global mapping of attenuation at Ku- and Ka-band. IEEE Trans. Geosci. Remote Sens., 41 , 21662176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Gorgucci E. , Lim S. , and Baldini L. , 2004a: Simulation of X-band radar observation of precipitation from S-band measurements. Proc. IGARSS 2004, Anchorage, AK, IEEE, 2752–2755.

  • Chandrasekar, V., Lim S. , Bharadwaj N. , Li W. , McLaughlin D. , Bringi V. N. , and Gorgucci E. , 2004b: Principles of networked weather radar operation at attenuating frequencies. Proc. ERAD 2004, Gotland, Sweden, ERAD, 109–114.

  • Delrieu, G., Caoudal S. , and Creutin J. D. , 1997: Feasibility of using mountain return for the correction of ground-based X-band weather radar. J. Atmos. Oceanic Technol., 14 , 368385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delrieu, G., Andrieu H. , and Creutin J. D. , 2000: Quantification of path-integrated attenuation for X- and C-band weather radar systems operating in Mediterranean heavy rainfall. J. Appl. Meteor., 39 , 840850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., Scarchilli G. , and Chandrasekar V. , 2000: Practical aspects of radar rainfall estimation using specific differential propagation phase. J. Appl. Meteor., 39 , 945955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., Chandrasekar V. , Bringi V. N. , and Scarchilli G. , 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59 , 23732384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Kingsmill D. E. , Martner B. E. , and Ralph F. M. , 2005: The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. J. Hydrometeor., 6 , 248262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S. G., Bringi V. N. , Chandrasekar V. , Maki M. , and Iwanami K. , 2005a: Correction of radar reflectivity and differential reflectivity for rain attenuation at X-band. Part I: Theoretical and empirical basis. J. Atmos. Oceanic Technol., 22 , 16211632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S. G., Maki M. , Iwanami K. , Bringi V. N. , and Chandrasekar V. , 2005b: Correction of radar reflectivity and differential reflectivity for rain attenuation at X-band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22 , 16331655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scarchilli, G., Gorgucci E. , Chandrasekar V. , and Dobaie A. , 1996: Self-consistency of polarization diversity measurement of rainfall. IEEE Trans. Geosci. Remote Sens., 34 , 2226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and Srivastava R. C. , 1971: Doppler radar observations of drop size distributions in a thunderstorm. J. Atmos. Sci., 28 , 983994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and Bringi V. N. , 1976: Potential use of the radar reflectivity at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15 , 6976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., Amayenc P. , and Marzoug M. , 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17 , 322356.

    • Search Google Scholar
    • Export Citation
  • Testud, J., Oury S. , Black R. A. , Amayenc P. , and Dou X. , 2001: The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physic and cloud remote sensing. J. Appl. Meteor., 40 , 11181140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop-size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41 , 16481661.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 5 5 5

Simulation of X-Band Rainfall Observations from S-Band Radar Data

View More View Less
  • 1 Colorado State University, Fort Collins, Colorado
  • | 2 Istituto di Scienze dell’Atmosfera e del Clima (CNR), Rome, Italy
Restricted access

Abstract

To design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to develop that dataset is through theoretical models. This paper presents a methodology to generate realistic range profiles of radar variables at attenuating frequencies, such as X band, for rain medium. Fundamental microphysical properties of precipitation, namely, size and shape distribution information, are used to generate realistic profiles of X band starting with S-band observation. Conditioning the simulation from S band maintains the natural distribution of rainfall microphysical parameters. Data from the Colorado State University’s University of Chicago–Illinois State Water Survey (CHILL) radar and the National Center for Atmospheric Research S-band dual-polarization Doppler radar (S-POL) are used to simulate X-band radar variables. Three procedures to simulate the radar variables and sample applications are presented.

Corresponding author address: S. Lim, Colorado State University, 1373 Campus Delivery, Fort Collins, CO 80523. Email: sang-hun.lim@colostate.edu

Abstract

To design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to develop that dataset is through theoretical models. This paper presents a methodology to generate realistic range profiles of radar variables at attenuating frequencies, such as X band, for rain medium. Fundamental microphysical properties of precipitation, namely, size and shape distribution information, are used to generate realistic profiles of X band starting with S-band observation. Conditioning the simulation from S band maintains the natural distribution of rainfall microphysical parameters. Data from the Colorado State University’s University of Chicago–Illinois State Water Survey (CHILL) radar and the National Center for Atmospheric Research S-band dual-polarization Doppler radar (S-POL) are used to simulate X-band radar variables. Three procedures to simulate the radar variables and sample applications are presented.

Corresponding author address: S. Lim, Colorado State University, 1373 Campus Delivery, Fort Collins, CO 80523. Email: sang-hun.lim@colostate.edu

Save