Improvement of the Temperature and Moisture Retrievals in the Lower Troposphere Using AIRS and GPS Radio Occultation Measurements

Shu-Peng Ho National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by Shu-Peng Ho in
Current site
Google Scholar
PubMed
Close
,
Ying-Hwa Kuo National Center for Atmospheric Research,* and University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Ying-Hwa Kuo in
Current site
Google Scholar
PubMed
Close
, and
Sergey Sokolovskiy University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Sergey Sokolovskiy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate temperature and water vapor profiles in the middle and lower troposphere (LT) are crucial for understanding the water cycle, cloud systems, and energy balance. Global positioning system (GPS) radio occultation (RO) is the first technique that can provide a high-vertical-resolution all-weather refractivity profile, which is a function of pressure, temperature, and moisture. However, in the moist LT over the Tropics, the refractivity retrievals from GPS RO data are often significantly negatively biased because of tracking errors and propagation effects related to sharp vertical moisture gradients that may result in superrefraction (SR). The Atmospheric Infrared Sounder (AIRS) is a nadir-viewing sounder that can measure vertical temperature and moisture profiles with about 1–2-km vertical resolution. However, AIRS observations cannot usually obtain accurate temperature and water vapor profiles in the planetary boundary layer (PBL) because of the poor resolving power in the LT. This study uses simulations based on radiosonde profiles by combining the AIRS and the GPS RO measurements to obtain the best temperature and moisture retrievals in the LT. Different approaches are used for the drier LT and the moist LT. For the drier LT, where GPS RO data are not affected by SR errors, a multivariable regression algorithm for inverting the combined AIRS and GPS RO measurements is used. In the moist LT (e.g., SR on top of PBL), the combined AIRS and GPS RO regression inversion above the LT is used as the first guess for AIRS-only physical retrieval, which is extended into the LT. The results show that combining AIRS and GPS RO data effectively constrains the individual solutions, and therefore significantly improves inversion results. The algorithm is also applied for all available radiosonde profiles (19 profiles) over a 1-month period from the site characterized by strong SR on top of the PBL. Retrieved temperature and water vapor profiles yield unbiased low-resolution refractivity profiles in the PBL.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Shu-Peng Ho, Atmospheric Chemistry Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: spho@ucar.edu

Abstract

Accurate temperature and water vapor profiles in the middle and lower troposphere (LT) are crucial for understanding the water cycle, cloud systems, and energy balance. Global positioning system (GPS) radio occultation (RO) is the first technique that can provide a high-vertical-resolution all-weather refractivity profile, which is a function of pressure, temperature, and moisture. However, in the moist LT over the Tropics, the refractivity retrievals from GPS RO data are often significantly negatively biased because of tracking errors and propagation effects related to sharp vertical moisture gradients that may result in superrefraction (SR). The Atmospheric Infrared Sounder (AIRS) is a nadir-viewing sounder that can measure vertical temperature and moisture profiles with about 1–2-km vertical resolution. However, AIRS observations cannot usually obtain accurate temperature and water vapor profiles in the planetary boundary layer (PBL) because of the poor resolving power in the LT. This study uses simulations based on radiosonde profiles by combining the AIRS and the GPS RO measurements to obtain the best temperature and moisture retrievals in the LT. Different approaches are used for the drier LT and the moist LT. For the drier LT, where GPS RO data are not affected by SR errors, a multivariable regression algorithm for inverting the combined AIRS and GPS RO measurements is used. In the moist LT (e.g., SR on top of PBL), the combined AIRS and GPS RO regression inversion above the LT is used as the first guess for AIRS-only physical retrieval, which is extended into the LT. The results show that combining AIRS and GPS RO data effectively constrains the individual solutions, and therefore significantly improves inversion results. The algorithm is also applied for all available radiosonde profiles (19 profiles) over a 1-month period from the site characterized by strong SR on top of the PBL. Retrieved temperature and water vapor profiles yield unbiased low-resolution refractivity profiles in the PBL.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Shu-Peng Ho, Atmospheric Chemistry Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: spho@ucar.edu

Save
  • Ahmad, B. and Tyler G. L. , 1998: The two-dimensional resolution kernel associated with retrieval of ionospheric atmospheric refractivity profiles by Abelian inversion of radio occultation phase data. Radio Sci., 33:129142.

    • Search Google Scholar
    • Export Citation
  • Ao, C. O., Meehan T. K. , Hajj G. A. , Mannucci A. J. , and Beyerle G. , 2003: Lower-troposphere refractivity bias in GPS occultation retrievals. J. Geophys. Res., 108.4577, doi:10.1029/2002JD003216.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., Coauthors 2003: AIRS/AMSU/HSB on the AQUA mission: Design, science objectives, data products, and processing system. IEEE Trans. Geosci. Remote Sens., 41:253264.

    • Search Google Scholar
    • Export Citation
  • Bean, B. R. and Dutton E. J. , 1966: Radio MeteorologyNational Bureau of Standards Monogr., No. 92, U.S. Government Printing Office, 435 pp.

  • Beyerle, G., Wickert J. , Schmidt T. , and Reigber C. , 2004: Atmospheric sounding by global navigation satellite system radio occultation: An analysis of the negative refractivity bias using CHAMP observations. J. Geophys. Res., 109.D01106, doi:10.1029/2003JD003922.

    • Search Google Scholar
    • Export Citation
  • Borbas, E., Li J. , Menzel W. P. , and Woolf H. M. , 2003: Combining radio occultation refractivities and IR/MW radiances to derive temperature and moisture profiles: A simulation study plus early results using CHAMP and ATOVS. J. Geophys. Res., 108.4676, doi:10.1029/2003JD003386.

    • Search Google Scholar
    • Export Citation
  • Collard, A. D. and Healy S. B. , 2003: The combined impact of future space-based atmospheric sounding instruments on numerical weather-prediction analysis fields: A simulation study. Quart. J. Roy. Meteor. Soc., 129B:27412760.

    • Search Google Scholar
    • Export Citation
  • Craven, P. and Wahba G. , 1979: Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math., 31:377403.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124:17671785.

    • Search Google Scholar
    • Export Citation
  • Divakarla, M. G., Barnet C. D. , Goldberg M. D. , McMillin L. M. , Maddy E. , Wolf W. , Zhou L. , and Liu X. , 2006: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111.D09S15, doi:10.1029/2005JD006116.

    • Search Google Scholar
    • Export Citation
  • Feng, D. D. and Herman B. M. , 1999: Remotely sensing the earth’s atmosphere using the global positioning system (GPS)—The GPS/MET data analysis. J. Atmos. Oceanic Technol., 16:9891002.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E., Coauthors 2003a: AIRS/AMSU/HSB validation. IEEE Trans. Geosci. Remote Sens., 41:418429.

  • Fetzer, E., Olsen E. T. , and Chen L. L. , 2003b: Validation of AIRS/AMSU/HSB retrieved products. Earth Observing Systems VIII, Vol. 5151, W. L. Barnes, Ed., SPIE, 211–219.

  • Hajj, G. A., Kursinski E. R. , Romans L. J. , Bertiger W. I. , and Leroy S. S. , 2002: A technical description of atmospheric sounding by GPS occultation. J. Atmos. Terr. Phys., 64:451469.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., Jupp A. M. , and Marquardt C. , 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32.L03804, doi:10.1029/2004GL020806.

    • Search Google Scholar
    • Export Citation
  • Ho, S. P., Smith W. L. , and Huang H. L. , 2002: Retrieval of atmospheric-temperature and water-vapor profiles by using combined satellite and ground-based infrared spectral-radiance measurements. Appl. Opt., 41:40574069.

    • Search Google Scholar
    • Export Citation
  • Hocke, K., 1997: Inversion of GPS meteorology data. Ann. Geophys., 15:443450.

  • Kuo, Y-H., Wee T. K. , Sokolovskiy S. , Rocken C. , Schreiner W. , Hunt D. , and Anthes R. A. , 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82B:507531.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., Schreiner W. S. , Wang J. , Rossiter D. L. , and Zhang Y. , 2005: Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 32.L05817, doi:10.1029/2004GL021443.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., Hajj G. A. , Schofield J. T. , Linfield R. P. , and Hardy K. R. , 1997: Observing earth’s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res., 102:D19. 2342923465.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., Healy S. B. , and Romans L. J. , 2000: Initial results of combining GPS occultations with ECMWF global analyses within a 1DVar framework. Earth Planets Space, 52:885892.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., Farley R. D. , and Hjelmfelt M. R. , 1991: A numerical case study of convection initiation along colliding convergence boundaries in northeast Colorado. J. Atmos. Sci., 48:23502366.

    • Search Google Scholar
    • Export Citation
  • Melbourne, W. G., Coauthors 1994: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. Jet Propulsion Laboratory Rep. 94–18, 147 pp.

  • Morozov, V. A., 1966: On the solution of functional equation by the method of regularization. Sov. Math. Dokl., 7:414417.

  • Mueller, C. K., Wilson J. W. , and Crook N. A. , 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8:132146.

    • Search Google Scholar
    • Export Citation
  • Oltmans, S. J., Voemel H. , Hofmann D. J. , Rosenlof K. H. , and Kley D. , 2000: The increase in stratospheric water vapor from balloon-borne, frostpoint hygrometer measurements at Washington, D. C. and Boulder, Colorado. Geophys. Res. Lett., 27:34533456.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., Coauthors 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102:D25. 2984929866.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic, and Planetary Physics, Vol. 2, World Scientific, 238 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Zhou D. K. , Harrison F. W. , Revercomb H. E. , Larar A. M. , Huang H-L. , and Huang B. , 2001: Hyperspectral remote sensing of atmospheric profiles from satellite and aircraft. Proc. SPIE, 4151:94102.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., 2001: Modeling and inverting radio occultation signals in the moist troposphere. Radio Sci., 36:441458.

  • Sokolovskiy, S., 2003a: Effect of superrefraction on inversions of radio occultation signals in the lower troposphere. Radio Sci., 38.1058, doi:10.1029/2002RS002728.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., 2003b: Effect of superrefraction and small-scale refractivity irregularities on inversion of radio occultation signals in the lower troposphere. Proc. Int. Workshop on GPS Meteorology, Tsukuba, Japan, MEXT and JISTEC, 2071–2075.

  • Sokolovskiy, S., Kuo Y-H. , Rocken C. , Schreiner W. S. , Hunt D. , and Anthes R. A. , 2006: Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode. Geophys. Res. Lett., 33.L12813, doi:10.1029/2006GL025955.

    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., Kirchengast G. , and Ladreiter H. P. , 1999: Inversion, error analysis, and validation of GPS/MET occultation data. Ann. Geophys., 17:122138.

    • Search Google Scholar
    • Export Citation
  • Strow, L. L., Hannon S. E. , De Souza-Machado S. , Motteler H. E. , and Tobin D. , 2003: An overview of the AIRS radiative transfer model. IEEE Trans. Geosci. Remote Sens., 41:303313.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., Barnet C. D. , and Blaisdell J. M. , 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41:390409.

    • Search Google Scholar
    • Export Citation
  • Wahba, G., 1975: Smoothing noisy data by spline functions. Numer. Math., 24:383393.

  • Ware, R., Coauthors 1996: GPS sounding of the atmosphere from low earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77:1940.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J. and Stephens G. L. , 1984: Cloud-radiation interaction and the climate problem. The Global Climate, J. T. Houghton, Ed., Cambridge University Press, 63–78.

  • Weckwerth, T. M., Wilson J. W. , and Wakimoto R. M. , 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124:769784.

    • Search Google Scholar
    • Export Citation
  • Westwater, E. R. and Grody N. C. , 1980: Combined surface- and satellite-based microwave temperature profile retrieval. J. Appl. Meteor., 19:14381444.

    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., Sweezy W. B. , McMillin L. M. , and Dean C. , 1984: Determination of atmospheric temperature profiles from a statistical combination of ground-based profiler and operational NOAA 6/7 satellite retrievals. J. Climate Appl. Meteor., 23:689703.

    • Search Google Scholar
    • Export Citation
  • Yunck, T., Liu C-H. , and Ware R. , 2000: A history of GPS sounding. Terr. Atmos. Oceanic Sci., 11:120.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 307 87 23
PDF Downloads 224 81 6