Sampling Errors in the Measurement of Rainfall Parameters Using the Precipitation Occurrence Sensor System (POSS)

B. E. Sheppard Cloud Physics and Severe Weather Research Section, Environment Canada, Toronto, Ontario, Canada

Search for other papers by B. E. Sheppard in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The Precipitation Occurrence Sensor System (POSS) is a small Doppler radar originally designed by the Meteorological Service of Canada (MSC) to report the occurrence, type, and intensity of precipitation in automated observing stations. It is also used for real-time estimation of raindrop size distributions (DSDs). From the DSD, various rainfall parameters can be calculated and relationships established, such as between the radar reflectivity factor (Z) and the rainfall rate (R). Earlier work presented first-order estimates of the sampling errors for some POSS rainfall parameter estimates. This work combines a Monte Carlo simulation and “inverse problem” analysis to better estimate errors due to the specific sampling problems of this disdrometer type. The uncertainties are necessary to determine the statistical significance of differences between DSD estimates by the POSS and other collocated disdrometers, or between POSS measurements in different climatologies. Additionally, confidence limits can be assigned to regression coefficients for rainfall parameter relationships determined from POSS estimates. An example is given of the uncertainties in the coefficients of measured ZR relationships.

Corresponding author address: B. E. Sheppard, Cloud Physics and Severe Weather Research Section, Environment Canada, 4905 Dufferin St., Toronto, ON M3H5T4, Canada. Email: brian.sheppard@ec.gc.ca

Abstract

The Precipitation Occurrence Sensor System (POSS) is a small Doppler radar originally designed by the Meteorological Service of Canada (MSC) to report the occurrence, type, and intensity of precipitation in automated observing stations. It is also used for real-time estimation of raindrop size distributions (DSDs). From the DSD, various rainfall parameters can be calculated and relationships established, such as between the radar reflectivity factor (Z) and the rainfall rate (R). Earlier work presented first-order estimates of the sampling errors for some POSS rainfall parameter estimates. This work combines a Monte Carlo simulation and “inverse problem” analysis to better estimate errors due to the specific sampling problems of this disdrometer type. The uncertainties are necessary to determine the statistical significance of differences between DSD estimates by the POSS and other collocated disdrometers, or between POSS measurements in different climatologies. Additionally, confidence limits can be assigned to regression coefficients for rainfall parameter relationships determined from POSS estimates. An example is given of the uncertainties in the coefficients of measured ZR relationships.

Corresponding author address: B. E. Sheppard, Cloud Physics and Severe Weather Research Section, Environment Canada, 4905 Dufferin St., Toronto, ON M3H5T4, Canada. Email: brian.sheppard@ec.gc.ca

Save
  • Acton, F. S., 1966: Analysis of Straight-Line Data. Dover Publications, 267 pp.

  • Beard, K. V., 1977: Terminal velocity adjustment for cloud and precipitation drops aloft. J. Atmos. Sci., 34 , 12931298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., Zhang G. , and Vivekanandan J. , 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41 , 674685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Chandrasekar V. , Balakrishnan N. , and Zrnic D. S. , 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7 , 829840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campos, E., and Zawadzki I. , 2000: Instrumental uncertainties in ZR relations. J. Appl. Meteor., 39 , 10881102.

  • Cho, H-K., Bowman K. P. , and North G. R. , 2004: A comparison of gamma and lognormal distributions for characterizing satellite rain rates from the Tropical Rainfall Measuring Mission. J. Appl. Meteor., 43 , 15861597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K. P., 1994: On the medians of gamma distributions and an equation of Ramanujan. Proc. Amer. Math. Soc., 121 , 245251.

  • Fulton, R. A., Breidenbach J. P. , Seo D. J. , Miller D. A. , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gertzman, H. S., and Atlas D. , 1977: Sampling errors in the measurement of rain and hail parameters. J. Geophys. Res., 82 , 49554966.

  • Jones, D. M. A., 1992: Raindrop spectra at the ground. J. Appl. Meteor., 31 , 12191225.

  • Joss, J., and Waldvogel A. , 1967: A raindrop spectrograph with automatic analysis. Pure Appl. Geophys., 68 , 240246.

  • Joss, J., and Waldvogel A. , 1969: Raindrop size distribution and sampling size errors. J. Atmos. Sci., 26 , 566569.

  • Kostinski, A. B., and Jameson A. R. , 1997: Fluctuation properties of precipitation. Part I: On deviations of single-size drop counts from the Poisson distribution. J. Atmos. Sci., 54 , 21742186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruger, A., and Krajewski W. F. , 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19 , 602617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Palmer W. Mc K. , 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Mishchenko, M. L., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. J. Appl. Opt., 39 , 10261031.

  • Press, W. H., Teukolsky S. A. , Vetterling W. T. , and Flannery B. P. , 1992: Numerical Recipes in Fortran. 2d ed. Cambridge University Press, 963 pp.

    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., 1990: The measurement of raindrop size distributions using a small Doppler radar. J. Atmos. Oceanic Technol., 7 , 255268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., and Joe P. I. , 1994: Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11 , 874887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., and Joe P. I. , 2000: Automated precipitation detection and typing in winter: A two year study. J. Atmos. Oceanic Technol., 17 , 14931507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skolnik, M. L., 1980: Introduction to Radar Systems. 2d ed. McGraw-Hill, 581 pp.

  • Sletten, C. J., 1988: Reflector and Lens Antennas: Analysis and Design Using Personal Computers. Arctech House, 432 pp.

  • Smith, P. L., Liu Z. , and Joss J. , 1993: A study of sampling-variability effects in raindrop size observations. J. Appl. Meteor., 32 , 12591269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 2005: Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, 342 pp.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 388 131 35
PDF Downloads 165 44 0