• Ackerman, T. P., and Stokes G. M. , 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3844.

  • Chou, S-H., and Atlas D. , 1982: Satellite estimates of ocean–air heat fluxes during cold air outbreaks. Mon. Wea. Rev., 110 , 14341450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S-H., Atlas R. M. , Shie C-L. , and Ardizzone J. , 1982: Estimates of surface humidity and latent heat fluxes over oceans from SSM/I data. Mon. Wea. Rev., 123 , 24052425.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Kneizys F. X. , Rothman L. S. , and Gallery W. O. , 1981: Atmospheric spectra transmittance and radiance: FASCODE 1B. Proc. SPIE, 277 , 152166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Kneizys F. X. , and Davies R. W. , 1989: Line shape and the water vapor continuum. Atmos. Res., 97 , 229241.

  • Courtier, P., and Coauthors, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124 , 17831807.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124 , 17671785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Schlatter T. W. , 1996: Research opportunities from emerging atmospheric observing and modeling capabilities. Bull. Amer. Meteor. Soc., 77 , 305323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and Veldon C. S. , 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85 , 353365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, W. P., and Gaffen D. J. , 1991: On the utility of radiosonde humidity archives for climate studies. Bull. Amer. Meteor. Soc., 72 , 15071520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and Coauthors, 1995: Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF. Bull. Amer. Meteor. Soc., 76 , 11941208.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., Posselt D. , Mecikalski J. R. , Wade G. S. , and Smith T. J. , 2003a: Rapid boundary layer water vapor transitions. Bull. Amer. Meteor. Soc., 84 , 2930.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., Smith W. L. , Howell H. B. , Knuteson R. O. , Woolf H. , and Revercomb H. E. , 2003b: Near continuous profiling of temperature, moisture, and atmospheric stability using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42 , 584597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., 1993: Uncertainties in climatological tropical humidity profiles: Some implications for estimating the greenhouse effect. J. Climate, 6 , 978982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harries, J. E., Brindley H. E. , Sagoo P. J. , and Bantges R. J. , 2001: Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature, 410 , 355357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Ding Y. , Griggs D. J. , Noguer M. , van der Linden P. J. , Dai X. , Maskell K. , and Johnson C. A. , 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 892 pp.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21 , 17631776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., Vogelmann A. M. , and Ramanathan V. , 2004: Saharan dust aerosol radiative forcing measured from space. J. Climate, 17 , 25582570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Paukkunen A. , Vömel H. , and Oltmans S. J. , 2004: Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol., 21 , 13051327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., Knuteson R. O. , Best F. A. , Osborne B. J. , Hanafin J. A. , and Brown O. B. , 2001: The Marine-Atmospheric Emitted Radiance Interferometer (M-AERI), a high-accuracy, sea-going infrared spectroradiometer. J. Atmos. Oceanic Technol., 18 , 9941013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and Coauthors, 2005: Profile observations of the Saharan air layer during AEROSE 2004. Geophys. Res. Lett., 32 .L05815, doi:10.1029/2004GL022028.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and Coauthors, 2006: Ship-based measurements for infrared sensor validation during Aerosol and Ocean Science Expedition 2004. J. Geophys. Res., 111 .D09S04, doi:10.1029/2005JD006385.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and Carlson T. N. , 1972: Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res., 77 , 52555265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Feltz W. F. , Knuteson R. O. , Revercomb H. E. , Woolf H. M. , and Howell H. B. , 1999: The retrieval of planetary boundary layer structure using ground-based infrared spectral measurements. J. Atmos. Oceanic Technol., 16 , 323333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Turner, D. D., Feltz W. F. , and Ferrare R. A. , 2000: Continuous water profiles from operational ground-based active and passive remote sensors. Bull. Amer. Meteor. Soc., 81 , 13011317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Wulfmeyer V. , Wakimoto R. M. , Hardesty R. M. , Wilson J. W. , and Banta R. M. , 1999: NCAR-NOAA lower-tropospheric water vapor workshop. Bull. Amer. Meteor. Soc., 80 , 23392357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., Prager E. , and Wilson D. , 2002: Research combines with public outreach on a cruise ship. Eos, Trans. Amer. Geophys. Union, 83 , 590596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and Johnson R. H. , 1998: Systematic errors in radiosonde humidities a global problem? Preprints, 10th Symp. on Measurements, Observations and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc, 72–73.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 1 1 1

Profiling the Lower Troposphere over the Ocean with Infrared Hyperspectral Measurements of the Marine-Atmosphere Emitted Radiance Interferometer

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 2 QSS Group, Inc., Lanham, and NOAA/NESDIS/Office of Research and Applications, Camp Springs, Maryland
  • | 3 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

Measurements of the spectra of infrared emission from the atmosphere were taken by a Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on the NOAA ship Ronald H. Brown during the Aerosol and Ocean Science Expedition (AEROSE) in the tropical Atlantic Ocean from 29 February to 26 March 2004. The spectra are used to retrieve profiles of temperature and humidity in the lower troposphere up to a height of 3000 m. The M-AERI retrievals of the atmospheric structure require an initial guess profile. In this work, retrievals obtained from four separate initializations are compared, using 1) radiosondes launched from the Ronald H. Brown, 2) NOAA/NWS/NCEP model reanalyses, 3) ECMWF model analyses, and 4) ECMWF model forecasts. The performance of the M-AERI retrievals for all four first-guess sources is then evaluated against the radiosonde measurements. The M-AERI retrievals initialized using radiosondes reproduce the radiosonde profiles quite well and capture much of the observed vertical structure as should be expected. Of the retrievals initialized with model fields, those obtained using the ECMWF data yielded results closest to the radiosonde observations and enabled detection of the Saharan air layer (SAL) evident during AEROSE. However, the NCEP reanalysis, as well as the corresponding retrievals, failed to detect the SAL. These results demonstrate the ability of the M-AERI profile retrievals to identify the anomalous humidity distributions in the lower troposphere, but underscore the need for suitable vertical resolution in the first-guess profile used in the retrievals under such conditions.

Corresponding author address: Dr. M. Szczodrak, Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: goshka@rsmas.miami.edu

Abstract

Measurements of the spectra of infrared emission from the atmosphere were taken by a Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on the NOAA ship Ronald H. Brown during the Aerosol and Ocean Science Expedition (AEROSE) in the tropical Atlantic Ocean from 29 February to 26 March 2004. The spectra are used to retrieve profiles of temperature and humidity in the lower troposphere up to a height of 3000 m. The M-AERI retrievals of the atmospheric structure require an initial guess profile. In this work, retrievals obtained from four separate initializations are compared, using 1) radiosondes launched from the Ronald H. Brown, 2) NOAA/NWS/NCEP model reanalyses, 3) ECMWF model analyses, and 4) ECMWF model forecasts. The performance of the M-AERI retrievals for all four first-guess sources is then evaluated against the radiosonde measurements. The M-AERI retrievals initialized using radiosondes reproduce the radiosonde profiles quite well and capture much of the observed vertical structure as should be expected. Of the retrievals initialized with model fields, those obtained using the ECMWF data yielded results closest to the radiosonde observations and enabled detection of the Saharan air layer (SAL) evident during AEROSE. However, the NCEP reanalysis, as well as the corresponding retrievals, failed to detect the SAL. These results demonstrate the ability of the M-AERI profile retrievals to identify the anomalous humidity distributions in the lower troposphere, but underscore the need for suitable vertical resolution in the first-guess profile used in the retrievals under such conditions.

Corresponding author address: Dr. M. Szczodrak, Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: goshka@rsmas.miami.edu

Save